首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sigH gene of Corynebacterium glutamicum encodes ECF sigma factor sigmaH. The gene apparently plays an important role in other stress responses as well as heat stress response. In this study, we found that deleting the sigH gene made C. glutamicum cells sensitive to the thiol-specific oxidant diamide. In the sigH mutant strain, the activity of thioredoxin reductase markedly decreased, suggesting that the trxB gene encoding thioredoxin reductase is probably under the control of sigmaH. The expression of sigH was stimulated in the stationary growth phase and modulated by diamide. In addition, the SigH protein was required for the expression of its own gene. These data indicate that the sigH gene of C. glutamicum stimulates and regulates its own expression in the stationary growth phase in response to environmental stimuli, and participates in the expression of other genes which are important for survival following heat and oxidative stress response.  相似文献   

2.
The Corynebacterium glutamicum WhcA protein, which inhibits the expression of oxidative stress response genes, is known to interact with the SpiA protein. In this study, we constructed and analyzed spiA mutant cells with the goal of better understanding the function of the spiA gene. A C. glutamicum strain overexpressing the spiA gene showed retarded cell growth, which was caused by an increased sensitivity to oxidants. Expression of the spiA and whcA genes was repressed by oxidant diamide, indicating coordinate regulation and dispensability of the genes in cells under oxidative stress. In the spiA-overexpressing cells, the trx gene, which encodes thioredoxin reductase, was severely repressed. Deletion of whcA in spiA-overexpressing cells (or vice versa) produced phenotypes similar to the wild-type strain. Collectively, these data demonstrate a negative regulatory role of the spiA gene in whcA-mediated oxidative stress response and provide additional clues on the mechanism by which the whcA gene is regulated.  相似文献   

3.
4.
5.
6.
Mycobacterium tuberculosis is a specialized intracellular pathogen that must regulate gene expression to overcome stresses produced by host defenses during infection. SigH is an alternative sigma factor that we have previously shown plays a role in the response to stress of the saprophyte Mycobacterium smegmatis. In this work we investigated the role of sigH in the M. tuberculosis response to heat and oxidative stress. We determined that a M. tuberculosis sigH mutant is more susceptible to oxidative stresses and that the inducible expression of the thioredoxin reductase/thioredoxin genes trxB2/trxC and a gene of unknown function, Rv2466c, is regulated by sigH via expression from promoters directly recognized by SigH. We also determined that the sigH mutant is more susceptible to heat stress and that inducible expression of the heat shock genes dnaK and clpB is positively regulated by sigH. The induction of these heat shock gene promoters but not of other SigH-dependent promoters was markedly greater in response to heat versus oxidative stress, consistent with their additional regulation by a heat-labile repressor. To further understand the role of sigH in the M. tuberculosis stress response, we investigated the regulation of the stress-responsive sigma factor genes sigE and sigB. We determined that inducible expression of sigE is regulated by sigH and that basal and inducible expression of sigB is dependent on sigE and sigH. These data indicate that sigH plays a central role in a network that regulates heat and oxidative-stress responses that are likely to be important in M. tuberculosis pathogenesis.  相似文献   

7.
8.
9.
10.
We previously showed that the 2-oxoglutarate dehydrogenase inhibitor protein OdhI of Corynebacterium glutamicum is phosphorylated by PknG at Thr14, but that also additional serine/threonine protein kinases (STPKs) can phosphorylate OdhI. To identify these, a set of three single (Δ pknA , Δ pknB , Δ pknL ), five double (Δ pknAG , Δ pknAL , Δ pknBG , Δ pknBL , Δ pknLG ) and two triple deletion mutants (Δ pknALG , Δ pknBLG ) were constructed. The existence of these mutants shows that PknA, PknB, PknG and PknL are not essential in C. glutamicum . Analysis of the OdhI phosphorylation status in the mutant strains revealed that all four STPKs can contribute to OdhI phosphorylation, with PknG being the most important one. Only mutants in which pknG was deleted showed a strong growth inhibition on agar plates containing glutamine as carbon and nitrogen source. Thr14 and Thr15 of OdhI were shown to be phosphorylated in vivo , either individually or simultaneously, and evidence for up to two additional phosphorylation sites was obtained. Dephosphorylation of OdhI was shown to be catalysed by the phospho-Ser/Thr protein phosphatase Ppp. Besides OdhI, the cell division protein FtsZ was identified as substrate of PknA, PknB and PknL and of the phosphatase Ppp, suggesting a role of these proteins in cell division.  相似文献   

11.
The Corynebacterium glutamicum whcA gene is known to play a negative role in the expression of genes responding to oxidative stress. The encoded protein contains conserved cysteines, which likely coordinate the redox-sensitive Fe-S cluster. To identify proteins which may interact with WhcA, we employed a two-hybrid system utilizing WhcA as 'bait'. Upon screening, several partner proteins were isolated from the C. glutamicum genomic library. Sequencing analysis of the isolated clones revealed out-of-frame peptide sequences, one of which showed high sequence homology with a dioxygenase encoded by NCgl0899. In vivo analysis of protein interaction using real-time quantitative PCR, which monitors his3 reporter gene expression, demonstrated that the interaction between NCgl0899-encoded protein and WhcA was specific. The interaction was labile to oxidants, such as diamide and menadione. Based on these data, NCgl0899 was named spiA (stress protein interacting with WhcA). Physical association and dissociation of the purified His(6)-WhcA and GST-SpiA fusion proteins, as assayed by in vitro pull-down experiments, were consistent with in vivo results. These data indicated that the interaction between WhcA and SpiA is not only specific but also modulated by the redox status of the cell and the functionality of the WhcA protein is probably modulated by the SpiA protein.  相似文献   

12.
13.
Campylobacter jejuni , a prevalent cause of bacterial gastroenteritis, must adapt to different environments to be a successful pathogen. We previously identified a C. jejuni two-component regulatory system (Cj1226/7c) as upregulated during cell infections. Analyses described herein led us to designate the system CprRS ( C ampylobacter p lanktonic growth r egulation). While the response regulator was essential, a cprS sensor kinase mutant was viable. The Δ cprS mutant displayed an apparent growth defect and formed dramatically enhanced and accelerated biofilms independent of upregulation of previously characterized surface polysaccharides. Δ cprS also displayed a striking dose-dependent defect for colonization of chicks and was modestly enhanced for intracellular survival in INT407 cells. Proteomics analyses identified changes consistent with modulation of essential metabolic genes, upregulation of stress tolerance proteins, and increased expression of MOMP and FlaA. Consistent with expression profiling, we observed enhanced motility and secretion in Δ cprS , and decreased osmotolerance and oxidative stress tolerance. We also found that C. jejuni biofilms contain a DNase I-sensitive component and that biofilm formation is influenced by deoxycholate and the metabolic substrate fumarate. These results suggest that CprRS influences expression of factors important for biofilm formation, colonization and stress tolerance, and also add to our understanding of C. jejuni biofilm physiology.  相似文献   

14.
15.
The ability of Helicobacter pylori to colonize the stomach requires that it combat oxidative stress responses imposed by the host. The role of methionine sulfoxide reductase (Msr), a methionine repair enzyme, in H. pylori stress resistance was evaluated by a mutant analysis approach. An msr mutant strain lacked immunologically detectable sulphoxide reductase protein and also showed no enzyme activity when provided with oxidized methionines as substrates. The mutant strain showed diminished growth compared to the parent strain in the presence of chemical oxidants, and showed rapid viability loss when exposed to oxidizing conditions. The stress resistance and enzyme activity could be recovered by complementing the mutant with a functional copy of the msr gene. Upon fractionation of parent strain and the complemented mutant cells into membranes and cytoplasmic proteins, most of the immunologically detectable Msr was localized to the membrane, and this fraction contained all of the Msr activity. Qualitative detection of the whole cell protein pattern using 2,4-dinitro phenyl hydrazine (DNPH) showed a far greater number of oxidized protein species in the mutant than in the parent strain when the cells were subjected to oxygen, peroxide or s-nitrosoglutathione (GSNO) induced stress. Importantly, no oxidized proteins were discerned in either strain upon incubation in anaerobic conditions. A mutant strain that synthesized a truncated Msr (corresponding to the MsrA domain) was slightly more resistant to oxidative stress than the msr strain. Mouse colonization studies showed Msr is an important colonization factor, especially for effective longer-term (14 and 21 days) colonization. Complementation of the mutant msr strain by chromosomal insertion of a functional gene restored mouse colonization ability.  相似文献   

16.
17.
18.
In the unicellular cyanobacterium Synechocystis sp. PCC 6803, the mrgA gene is part of the PerR regulon that is upregulated during peroxide stress. We determined that an Δ mrgA mutant was highly sensitive to low peroxide levels and that the mutant upregulated a gene cluster ( sll1722-26 ) that encoded enzymes involved with exopolymeric substance (EPS) production. We made mutants in this EPS cluster in both a wild type and Δ mrgA background and studied the responses to oxidative stress by measuring cell damage with LIVE/DEAD stain. We show that Synechocystis sp. PCC 6803 becomes highly sensitive to oxidative stress when either mrgA or the sll1722-26 EPS components are deleted. The results suggest that the deletion of the EPS cluster makes a cell highly susceptible to cell damage, under moderate oxidative stress conditions. Mutations in either mrgA or the EPS cluster also result in cells that are more light and peroxide sensitive, and produce significantly less EPS material than in wild type. In this study, we show that in the absence of MrgA, which is known to be involved in the storage or mobilization of iron, cells can be more easily damaged by exogenous oxidative and light stress.  相似文献   

19.
We cloned and sequenced the glutathione reductase gene (gor) of an oxygen-tolerant Streptococcus mutans, and constructed a gor-disruption mutant by homologous recombination. The gor gene consisted of 1,350 bp, coding for a protein of 450 amino acid residues. The deduced amino acid sequence of the S. mutans gor gene product showed extensive similarity with those of glutathione reductases from prokaryotes and eukaryotes. Although the mutant could grow aerobically, it showed no growth in the presence of 2 mM diamide, a thiol-specific oxidant. In contrast, growth of the wild-type strain was not significantly inhibited by 2 mM diamide, and glutathione reductase activity was increased 2.2-fold under these conditions. In addition, the level of glutathione reductase activity in the wild-type strain was increased 3.6-fold upon exposure to air, and the elevated level of the enzyme was retained throughout the aerobic growth. Thus, glutathione reductase may be important in protection of S. mutans against oxidative stress.  相似文献   

20.
Legionella pneumophila enhC - mutants were originally identified as being defective for uptake into host cells. In this work, we found that the absence of EnhC resulted in defective intracellular growth when dissemination of intracellular bacteria to neighbouring cells was expected to occur. No such defect was observed during growth within the amoeba Dictyostelium discoideum. Culture supernatants containing the secreted products of infected macrophages added to host cells restricted the growth of the Δ enhC strain, while tumour necrosis factor α (TNF-α), at concentrations similar to those found in macrophage culture supernatants, could reproduce the growth restriction exerted by culture supernatants on L. pneumophila Δ enhC . The absence of EnhC also caused defective trafficking of the Legionella- containing vacuole in TNF-α-treated macrophages. EnhC was shown to be an envelope-associated protein largely localized to the periplasm, with its expression induced in post-exponential phase, as is true for many virulence-associated proteins. Furthermore, the absence of EnhC appeared to affect survival under stress conditions, as the Δ enhC mutant was more susceptible to H2O2 treatment than the wild-type strain. EnhC therefore is a unique virulence factor that is required for growth specifically when macrophages have heightened potential to restrict microbial replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号