首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition studies and affinity chromatography indicate that derivatives of tryptophanol phosphate are suitable ligands for the affinity chromatography of tryptophan synthase. A phenyl group on the spacer arm strengthens the interaction of immobilized tryptophanol phosphate with the enzyme. The alpha 2 beta 2 complex specifically requires the presence of 0.3--0.5 M phosphate ions for binding. The alpha subunit binds in dilute Tris buffer, but its binding is also enhanced by the presence of phosphate ions. The beta 2 subunit binds unspecifically but strongly to the affinity material and to a variety of other immobilized hydrophobic ligands. Binding studies with suspensions of affinity material show that the alpha subunit interacts rapidly and reversibly. Indoleglycerol phosphate and indolepropanol phosphate release bound alpha 2 beta 2 complex and alpha subunit in a competitive manner, indicating that the interaction occurs biospecifically, i.e. via the active site of alpha subunit. L-Serine is a non-competitive inhibitor of binding. These results are discussed with regard to the composite-active-site hypothesis [T. E. Creighton (1970) Eur. J. Biochem, 13, 1--10]. Both the alpha subunit and the alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli can be obtained with high yields and in homogenous form by absorption to the affinity material from partially purified preparations. Elution is achieved with linear gradients either of indolepropanol phosphate or of indoleglycerol phosphate or, in the case of the complex, of L-serine. At the low concentrations of the complex found in crude extracts of wild-type E. coli cells, the unexpectedly high affinity of the beta 2 subunit for hydrophobic ligands leads to partial dissociation of the complex.  相似文献   

2.
NADH:ubiquinone oxidoreductase (complex I) is the first and largest enzyme of the mitochondrial respiratory chain. The low-resolution structure of the complex is known from electron microscopy studies. The general shape of the complex is in the form of an L, with one arm in the membrane and the other peripheral. We have purified complex I from beef heart mitochondria and reconstituted the enzyme into lipid bilayers. Under different conditions, several two-dimensional crystal forms were obtained. Crystals belonging to space groups p222(1) and c12 (unit cell 488 Ax79 A) were obtained at 22 degrees C and contained only the membrane fragment of complex I similar to hydrophobic subcomplex Ibeta but lacking the ND5 subunit. A crystal form with larger unit cell (534 Ax81 A, space group c12) produced at 4 degrees C contained both the peripheral and membrane arms of the enzyme, except that ND5 was missing. Projection maps from frozen hydrated samples were calculated for all crystal forms. By comparing two different c12 crystal forms, extra electron density in the projection map of large crystal form was assigned to the peripheral arm of the enzyme. One of the features of the map is a deep, channel-like, cleft next to peripheral arm. Comparison with available structures of the intact enzyme indicates that large hydrophobic subunit ND5 is situated at the distal end of the membrane domain. Possible locations of subunit ND4 and of other subunits in the membrane domain are proposed. Implications of our findings for the mechanism of proton pumping by complex I are discussed.  相似文献   

3.
Control of protein phosphatase 2A by simian virus 40 small-t antigen.   总被引:48,自引:14,他引:34       下载免费PDF全文
Soluble, monomeric simian virus 40 (SV40) small-t antigen (small-t) was purified from bacteria and assayed for its ability to form complexes with protein phosphatase 2A (PP2A) and to modify its catalytic activity. Different forms of purified PP2A, composed of combinations of regulatory subunits (A and B) with a common catalytic subunit (C), were used. The forms used included free A and C subunits and AC and ABC complexes. Small-t associated with both the free A subunit and the AC form of PP2A, resulting in a shift in mobility during nondenaturing polyacrylamide gel electrophoresis. Small-t did not interact with the free C subunit or the ABC form. These data demonstrate that the primary interaction is between small-t and the A subunit and that the B subunit of PP2A blocks interaction of small-t with the AC form. The effect of small-t on phosphatase activity was determined by using several exogenous substrates, including myosin light chains phosphorylated by myosin light-chain kinase, myelin basic protein phosphorylated by microtubule-associated protein 2 kinase/ERK1, and histone H1 phosphorylated by protein kinase C. With the exception of histone H1, small-t inhibited the dephosphorylation of these substrates by the AC complex. With histone H1, a small stimulation of dephosphorylation by AC was observed. Small-t had no effect on the activities of free C or the ABC complex. A maximum of 50 to 75% inhibition was obtained, with half-maximal inhibition occurring at 10 to 20 nM small-t. The specific activity of the small-t/AC complex was similar to that of the ABC form of PP2A with myosin light chains or histone H1 as the substrate. These results suggested that small-t and the B subunit have similar qualitative and quantitative effects on PP2A enzyme activity. These data show that SV40 small-antigen binds to purified PP2A in vitro, through interaction with the A subunit, and that this interaction inhibits enzyme activity.  相似文献   

4.
A new method to purify papain- or detergent-solubilized form (papain or detergent form) of γ-glutamyltransferase from rat hepatomas as well as from rat kidney by immuno-affinity column chromatography is presented. The antibody-column was prepared by coupling the anti-kidney papain form antibody, which had been purified by using a kidney papain form-Sepharose column, to CNBr-activated Sepharose 4B. The enzyme bound to the antibody-column was eluted with 0.04 M NH4OH. By this method, detergent forms were purified 300 and 1600-fold in approx. 50% yields from rat kidney and rat ascites hepatoma AH 13, respectively, and the papain form was also purified 16 000-fold in a similar yield from primary hepatoma which has a very low activity of this enzyme. Preparations thus obtained apparently did not contain any peptide other than heavy and light subunit peptides of this enzyme on SDS-polyacrylamide gel electrophoresis. The detergent form of kidney enzyme was preferentially adsorbed to a hydrophobic column of aminooctyl-Sepharose, while the papain form was not, suggesting that the detergent form might be adsorbed to the column through hydrophobic interaction of the membrane-binding domain. The domain peptide was also purified by the hydropholic column after release from the detergent form by papain treatment. The molecular weight of the peptide was estimated to be about 16 000 on SDS-polyacrylamide gel electrophoresis. On double immunodiffusion, the domain peptide reacted with anti-detergent form antibody but not with anti-papain form antibody. The domain-specific antibody was also purified from the anti-detergent form antibody.  相似文献   

5.
《BBA》1986,848(2):230-238
Purified F1-ATPase from Micrococcus lysodeikticus (Micrococcus luteus) contains extensive and easily accessible areas capable of hydrophobic interaction. These hydrophobic areas were demonstrated by the binding of a non-ionic and a mild anionic detergent to this protein, evidenced by charge shift electrophoresis and measured by equilibrium gel chromatography with labelled detergents. F1-ATPase bound 0.06 ± 0.01 g octyl glucoside per g protein and 0.12 ± 0.01 g deoxycholate per g protein, which amount to 81 and 119 amphiphile molecules per protein molecule, respectively. Deoxycholate and octyl glucoside inhibited the Ca2+- and Mg2+-dependent ATP hydrolytic activity of the enzyme. The inhibition by octyl glucoside was moderately cooperative. Binding of these detergents to the enzyme did not seem to induce any disruption of its quaternary structure, although the spontaneous dissociation of the δ subunit, which is not essential for the enzyme activity, increased during deoxycholate treatment. These results suggest that hydrophobic domains play a role in the enzymatic activity of this coupling factor and / or in its interaction with the membrane.  相似文献   

6.
A new method to purify papain- or detergent-solubilized form (papain or detergent form) of gamma-glutamyltransferase from rat hepatomas as well as from rat kidney by immuno-affinity column chromatography is presented. The antibody-column was prepared by coupling the anti-kidney papain form antibody, which had been purified by using a kidney papain form-Sepharose column, to CNBr-activated Sepharose 4B. The enzyme bound to the antibody-column was eluted with 0.04 M NH4OH. By this method, detergent forms were purified 300 and 1600-fold in approx. 50% yields from rat kidney and rat ascites hepatoma AH 13, respectively, and the papain form was also purified 16 000-fold in a similar yield from primary hepatoma which has a very low activity of this enzyme. Preparations thus obtained apparently did not contain any peptide other than heavy and light subunit peptides of this enzyme on SDS-polyacrylamide gel electrophoresis. The detergent form of kidney enzyme was preferentially absorbed to a hydrophobic column of aminooctyl-Sepharose, while the papain form was not, suggesting that the detergent form might be adsorbed to the column through hydrophobic interaction of the membrane-binding domain. The domain peptide was also purified by the hydrophobic column after release from the detergent form by papain treatment. The molecular weight of the peptide was estimated to be about 16 000 on SDS-polyacrylamide gel electrophoresis. On double immunodiffusion, the domain peptide reacted with anti-detergent form antibody but not with anti-papain form antibody. The domain-specific antibody was also purified from the anti-detergent form antibody.  相似文献   

7.
We have developed a method for the simultaneous purification of hexokinase, glucosephosphate isomerase, phosphofructokinase, fructose-1,6-bisphosphate aldolase, triosephosphate isomerase, D-glyceraldehyde-phosphate dehydrogenase, phosphoglycerate kinase, glycerol-3-phosphate dehydrogenase and glycerol kinase from Trypanosoma brucei in yields varying over 8-55%. Crude glycosomes were prepared by differential centrifugation of cell homogenates. Subsequent hydrophobic interaction chromatography on phenyl-Sepharose resulted in six pools containing various mixtures of enzymes. These pools were processed via affinity chromatography (immobilized ATP), hydrophobic interaction chromatography (octyl-Sepharose) and ion-exchange chromatography (CM- and DEAE-cellulose) which resulted in the purification of all nine enzymes. The native enzyme and subunit molecular masses, as determined by gel filtration and gel electrophoresis under denaturing conditions, were compared with those of their homologous counterparts from other organisms. Trypanosomal hexokinase is a hexamer and differs in subunit composition from the mammalian enzymes (monomers) as well as in subunit size (51 kDa versus 96-100 kDa, respectively). Phosphofructokinase only differs in subunit size (51 kDa for T. brucei versus 80-90 kDa for mammals) but had identical subunit composition (tetrameric). The others all have the same subunit composition as their mammalian counterparts. Except for triosephosphate isomerase, all Trypanosoma enzymes have subunits which are 1-5 kDa larger in size. Together these nine enzymes contribute 3.3 +/- 1.6% to the total cellular protein of T. brucei and at least 90% to the total glycosomal protein. A comparison of calculated intraglycosomal concentrations of the enzymes with the glycosomal metabolite concentrations shows that in the case of aldolase, glyceraldehyde-phosphate dehydrogenase and phosphoglycerate kinase, the concentration of active sites is of the same order of magnitude as that of their reactants. A common feature of the glycosomal glycolytic enzymes (with the exception of glucosephosphate isomerase) is that they are highly basic proteins with pI values between 8.8 and 10.2, values which are 1-4 higher than in the case of their mammalian cytosolic counterparts and 3-6 higher than in the case of the various unicellular organisms. It is suggested that both the larger subunit size and the basic character of the T. brucei glycolytic proteins are involved in the routing of the enzymes from their site of biogenesis (the cytosol) towards their site of action (the glycosome).  相似文献   

8.
l-Phenylalanine ammonia-lyase has been purified from elicitor-treated alfalfa (Medicago sativa L.) cell suspension cultures using two protocols based on different sequences of chromatofocusing and hydrophobic interaction chromatography. Three distinct forms of the intact enzyme were separated on the basis of affinity for Octyl-Sepharose, with isoelectric points in the range pH 5.1 to 5.4. The native enzyme was a tetramer of Mr 311,000; the intact subunit Mr was about 79,000, although polypeptides of Mr 71,000, 67,000 and 56,000, probably arising from degradation of the intact subunit, were observed in all preparations. Two-dimensional gel analysis revealed the presence of several subunit isoforms of differing isoelectric points. The purified isoforms of the native enzyme had different Km values for l-phenylalanine in the range 40 to 110 micromolar, although mixtures of the forms in crude preparations exhibited apparent negative rate cooperativity. The enzyme activity was induced approximately 16-fold within 6 hours of exposure of alfalfa cells to a fungal elicitor or yeast extract. Analysis by hydrophobic interaction chromatography revealed different proportions of the different active enzyme isoforms, depending upon either time after elicitation or the elicitor used. The elicitor-induced increase in enzyme activity was associated with increased translatable phenylalanine ammonia-lyase mRNA activity in the polysomal fraction.  相似文献   

9.
M Y Lee  C K Tan  K M Downey  A G So 《Biochemistry》1984,23(9):1906-1913
DNA polymerase delta from calf thymus has been purified to apparent homogeneity by a new procedure which utilizes hydrophobic interaction chromatography with phenyl-Sepharose at an early step to separate most of the calcium-dependent protease activity from DNA polymerase delta and alpha. The purified enzyme migrates as a single protein band on polyacrylamide gel electrophoresis under nondenaturing conditions. The sedimentation coefficient of the enzyme is 7.9 S, and the Stokes radius is 53 A. A molecular weight of 173K has been calculated for the native enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the homogeneous enzyme reveals two polypeptides of 125 and 48 kDa. This subunit structure differs from that of DNA polymerase delta prepared by our previous procedure, which was composed of subunits of 60 and 49 kDa [Lee, M. Y. W. T., Tan, C.-K., Downey , K. M., & So, A. G. (1981) Prog . Nucleic Acid Res. Mol. Biol. 26, 83-96], suggesting that the 60-kDa polypeptide may have been derived from the 125-kDa polypeptide during enzyme purification, possibly as the result of cleavage of an unusually sensitive peptide bond. DNA polymerase delta is separated from DNA polymerase alpha by hydrophobic interaction chromatography on phenyl-Sepharose; DNA polymerase delta is eluted at pH 7.2 and DNA polymerase alpha at pH 8.5. DNA polymerase delta can also be separated from DNA polymerase alpha by chromatography on hydroxylapatite; DNA polymerase alpha binds to hydroxylapatite in the presence of 0.5 M KCl, whereas DNA polymerase delta is eluted at 90 mM KCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A rapid separation method for bovine brain S100 alpha alpha, S100a, and S100b protein using fast protein liquid chromatography on a Mono Q column and its application in preparation of a large amount of S100 alpha alpha protein are described. The conformation of S100 alpha alpha in the metal-free forms as well as in the presence of calcium were studied by UV absorption, circular dichroism, intrinsic fluorescence, sulfhydryl reactivity, and interaction with a hydrophobic fluorescent probe. The alpha-subunit appears to have nearly identical conformation in S100 alpha alpha and S100a protein dimers. We also confirmed that only the alpha-subunit exposes hydrophobic domains to solvent in the presence of calcium and that cysteine residues exposed upon Ca2+ binding to S100 proteins correspond to Cys 85 alpha and Cys 84 beta. Incubation of S100a with calcium and KCl proved that calcium binding to the putative calcium-binding sites (site I alpha, I beta) triggers a time- and temperature-dependent conformational change in the protein structure which decreases the antagonistic effect of KCl on calcium binding to sites II alpha and II beta and provokes subunit exchanges between protein dimers and the emergence of S100 alpha alpha and S100b (beta beta) proteins. Dynamic fluorescence measurements showed that incubating calcium at high S100a protein concentrations (greater than 10(-5) M) induces an apparent slow dimer-monomer equilibrium which might result in total subunit dissociation at lower protein concentrations. The effect of acidic pH on subunit dissociation in S100a protein (Morero, R. D., and Weber, G. (1982) Biochim. Biophys. Acta 703, 231-240) arises from conformational changes in the protein structure that are similar to those induced by Ca2+ incubation.  相似文献   

11.
NAD(P)H:(quinone-acceptor) oxidoreductase (EC 1.6.99.2) is a widely distributed enzyme which promotes two-electron reductions of quinones and thereby protects cells against damage by reactive oxygen species generated during oxidative cycling of quinones and semiquinone radicals. Quinone reductase activity represents a minor component (about 0.006%) of mouse liver cytosolic proteins under basal (uninduced) conditions. Two isofunctional forms of this quinone reductase have been purified to homogeneity (1700-fold) in 30% yield from the liver cytosols of female CD-1 mice in which the enzymes were induced by administration of 2(3)-tert-butyl-4-hydroxyanisole. The purification involved ion exchange, hydrophobic, and affinity chromatographies. The two enzyme forms have been designated "hydrophilic" and "hydrophobic" based on the order of elution from phenyl-Sepharose. The more abundant hydrophilic form has been crystallized in the presence of FAD in the form of macroscopic tetragonal crystals. The two forms have similar isoelectric points (pI 9.2) and subunit molecular weights (Mr = 30,000) and probably exist as dimers in the native state. Purified preparations of the enzymes are equiactive with NADH and NADPH and show almost complete dependence on added FAD for catalytic activity. The Km values for FAD of the hydrophilic and hydrophobic forms are 2.72 and 1.72 nM, respectively. Their catalytic activities are the same and are remarkably high for nicotinamide nucleotide-linked dehydrogenases; maximum velocities (expressed per mg of pure enzyme) approach 4000 units/mg of protein under appropriate assay conditions. When menadione is the electron acceptor, the Km value for this quinone is very low (Km congruent to 2 microM). Both enzyme forms are potently inhibited by dicoumarol. Rabbit antisera against the hydrophilic quinone reductase precipitate quantitatively the entire quinone reductase activity of mouse liver cytosols obtained from animals maintained on a standard diet or those induced with 3-tert-butyl-4-hydroxyanisole. The quinone reductase activity of rat liver cytosols is also quantitatively precipitated by this antiserum.  相似文献   

12.
A Mg-ATP-dependent protein phosphatase has been reconstituted from the catalytic subunit of protein phosphatase-1 and inhibitor-2, and consists of a 1:1 complex between these proteins. Activation of this enzyme by glycogen synthase kinase-3 and Mg-ATP results from the phosphorylation of inhibitor-2 on a threonine residue(s) and is accompanied by the dissociation of the complex. The results prove that protein phosphatase-1 and the Mg-ATP-dependent protein phosphatase contain the same catalytic subunit, and that they are interconvertible forms of the same enzyme.  相似文献   

13.
The alpha form of the A subunit of human protein phosphatase 2A was expressed in insect cells following infection with a recombinant baculovirus. A alpha was expressed as a soluble protein that comprised approximately 10% of total cellular protein. The expressed A alpha subunit was purified by chromatography on amino-hexyl-Sepharose and Mono Q with a yield of 2 mg/500-ml culture. The recombinant protein had the same apparent molecular mass as the bovine cardiac protein and was devoid of myosin light chain phosphatase activity. Biological activity of expressed A was assessed by assays of complex formation with the catalytic (C) and B subunits, purified from bovine cardiac tissue, and by inhibition of phosphatase activity. Purified A alpha had a high apparent affinity for C (IC50 = 0.10 nM) and bound with a stoichiometry of 1 mol of A/mol of C. Interaction of A alpha with the catalytic subunit caused a maximal inhibition of myosin light chain and phosphorylase phosphatase activities of 50 and 79%, respectively. The AC complex prepared by reconstitution of recombinant A alpha with C had the same electrophoretic mobility in nondenaturing polyacrylamide gels and the same elution volume when chromatographed on a size exclusion column as the native AC complex purified from cardiac muscle. Similar chromatographic profiles were also observed for the heterotrimer reconstituted from recombinant A alpha, purified B and C, and the native bovine cardiac heterotrimeric holoenzyme. Cross-linking of the native enzyme and the reconstituted heterotrimer generated the same pattern of high molecular weight species. Immunological analyses of these complexes demonstrated that distinct cross-linked forms composed of ABC, AC, AB, and BC were obtained. These results suggest that each of the three subunits of protein phosphatase 2A forms direct contacts with both of the others.  相似文献   

14.
The enzyme myeloperoxidase (MPO) is a functionally important glycoprotein of neutrophilic granulocytes and occurs in three major isoforms (forms 1, 2, and 3) that are dimeric structures composed of two heavy subunit-light subunit protomers, each of which is associated with a chlorine-like prosthetic group. In the present study, highly purified MPO isoforms were obtained from the cells of a single normal donor, and each protein was subjected to reductive alkylation under nondenaturing conditions. The resulting enzymatically active protomers were separated from unreacted dimer using gel filtration chromatography. Use of a fast protein liquid chromatography cation exchange system with a Mono S matrix revealed heterogeneity of the protomers, and allowed essentially complete resolution of the protomers of MPO form 2. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two resolved protomeric species under reducing conditions revealed small but reproducible differences in the Mr of their heavy subunits (59,000 and 57,000). Treatment with either endo-beta-N-acetylglucosaminidase or peptide N-glycohydrolase F reduced the Mr of each heavy subunit by approximately 3000 but did not change their relative electrophoretic mobilities. Heavy and light subunits were prepared from each of the MPO isoforms by reductive alkylation under conditions that allowed full retention of the prosthetic group with the heavy subunit. Reverse-phase chromatography and amino-terminal sequencing showed that each MPO isoform contained one major species of light subunit and several minor species. No differences in peroxidatic activity or inhibition by salicylhydroxamic acid were observed among any of the MPO isoforms or resolved protomers, but the latter were considerably more heat labile than dimeric forms of the enzyme and a monomeric form isolated from HL-60 cells. This is the first report of the isolation and partial characterization of distinct protomers from a single isoform of human MPO and suggests that the structure of MPO is more complex than considered previously.  相似文献   

15.
Multiple Forms of Glutamate Decarboxylase in Porcine Brain   总被引:13,自引:9,他引:4  
Three forms of glutamate decarboxylase from hog brain (termed α-, ß-, and γ-GAD) were separated by hydrophobic interaction chromatography on phenyl-Sepharose, by isoelectric focusing, and by polyacryl-amide gel electrophoresis. When rechromatographed on phenyl-Sepharose, each form migrated as a single entity, indicating that the forms are not readily interconvertible. The three forms are not different-sized aggregates of one form, since all three have the same approximate molecular weight (100,000) as determined by Sephadex G-200 chromatography. The pIs of the three forms separated by phenyl-Sepharose were determined by isoelectric focusing. The values obtained (5.3, 5.5, and 5.8 for α-, ß-, and γ-GAD, respectively) were comparable to the pIs of the three peaks of activity observed upon focusing of enzyme that had been subjected to phenyl-Sepharose chromatography. These results indicate that phenyl-Sepharose chromatography and isoelectric focusing separate the same three components. When synaptosomal extracts were analyzed by phenyl-Sepharose chromatography without intervening purification steps, all three forms were present, but the proportion of ß-GAD was somewhat higher and that of γ-GAD somewhat lower than in the usual preparations.  相似文献   

16.
The purification of detergent-solubilized kidney microvillar endopeptidase (EC 3.4.24.11) by immuno-adsorbent chromatography is described. The product (the d-form) was 270-fold purified compared with the homogenate of kidney cortex and was obtained in a yield of 5%. It was free of other peptidase activities and homogeneous by electrophoretic analyses. It contained about 15% carbohydrate and one Zn atom/subunit. Two trypsin-treated forms were also characterized. One (dt-form) was obtained by treatment of the d-form. The other (tt-form) was the result of solubilizing the membrane by treatment with toluene and trypsin. All three forms had apparent subunit Mr values of approx. 89 000, but the d-form appeared to be slightly larger than the other two. Estimates of Mr by gel filtration showed that of the tt-form to be 216 000 whereas those of the other forms were 320 000. An estimate of the detergent (Triton X-100) bound to the d- and dt-forms accounted for this difference. By several criteria, including charge-shift crossed immunoelectrophoresis and hydrophobic chromatography, the d- and dt-forms were shown to be amphipathic molecules. In contrast, the tt-form was hydrophilic in its properties. Differences in ionic properties were also noted, consistent with the loss, in the case of the dt-form, of a positively charged peptide. The results indicate that the native endopeptidase is a dimeric molecule, each subunit being anchored in the membrane by a relatively small region of the polypeptide close to one or other terminus. The d- and dt-forms had similar enzyme activity when assayed by the hydrolysis of 125I-insulin B-chain. Chelating agents and phosphoramidon inhibited the endopeptidase. The kinetic constants were determined by a new two-stage fluorimetric assay using glutarylglycylglycylphenylalanine 2-naphthylamide as substrate and aminopeptidase N (EC 3.4.11.2) to hydrolyse phenylalanine 2-naphthylamide. The Km was 68 microM and Vmax. 484nmol X min-1 X (mg of protein)-1.  相似文献   

17.
ATP synthase from bovine mitochondria is a complex of 13 different polypeptides, whereas the Escherichia coli enzyme is simpler and contains eight subunits only. Two of the bovine subunits, b and d, which had not been characterized, have been isolated from the purified enzyme. Subunits with sizes corresponding to bovine subunits b and d are evident in preparations of the enzyme from mitochondria of other species. Partial protein sequences have been determined by direct methods. On the basis of some of this information, two oligonucleotide mixtures, 17 and 18 bases in length, have been synthesized and used as hybridization probes in the isolation of clones of the cognate cDNAs. The sequences of the two proteins have been deduced from their DNA sequences. Subunit b is 214 amino acid residues in length and has a free N terminus. Subunit d is 160 amino acid residues long. Its N-terminal alanine is blocked by an N-acetyl group, as demonstrated by fast atom bombardment mass spectrometry of N-terminal peptides. The sequence near the N terminus of the b subunit is made predominantly of hydrophobic residues, whereas the remainder of the protein is mainly hydrophilic. This N-terminal hydrophobic region may be folded into an alpha-helical structure spanning the lipid bilayer. In its distribution of hydrophobic residues, this protein resembles the b subunits of ATP synthase complexes in bacteria and chloroplasts. The b subunit in E. coli forms an important structural link between the extramembrane sector of the enzyme F1, and the intrinsic membrane domain, FO. It is proposed that the bovine mitochondrial subunit b serves a similar function. If this is so, the mitochondrial enzyme, as the chloroplast ATP synthase, contains equivalent subunits to all eight of those that constitute the E. coli enzyme. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts.  相似文献   

18.
19.
An active form of rat dipeptidyl aminopeptidase I (DPPI, cathepsin C) was obtained by heterologous expression in insect cells. Baculoviruses carrying a cDNA sequence encoding the entire rat DPPI precursor was used to infect High Five cells in a serum-free medium. Recombinant DPPI (rDPPI) was secreted into the medium from which it was purified by a combination of ammonium sulfate fractionation, hydrophobic interaction chromatography (HIC), and ion-exchange chromatography. A polyhistidine-tagged form of the enzyme (HT-rDPPI) was purified from the medium by immobilized metal affinity chromatography (IMAC).In vivoactivation of native rat DPPI involves at least three chain cleavages per subunit and the ability of the expression system to imitate this processing was investigated. Both rDPPI and HT-rDPPI were secreted into the medium as unprocessed and inactive proenzymes and gradually converted into their active forms in the medium. This process was not completed at the time of harvest but mature enzyme processed similarly to native rat and human DPPI could be obtained by incubating the eluates from the HIC and IMAC columns at pH 4.5 and 5°C for 18–40 h. The yield of purified and matured enzyme was approximately 50 mg/liter, and it was shown that rDPPI and HT-rDPPI were active against both a dipeptide–p-nitroanilide substrate and human growth hormone N-terminally extended with an Ala-Glu dipeptide.  相似文献   

20.
Purification of branched chain aminotransferase from rat heart mitochondria   总被引:4,自引:0,他引:4  
This paper presents the first purification of the branched chain aminotransferase (EC 2.6.1.42) from rat heart mitochondria. The enzyme has been purified from the 100,000 x g supernatant obtained after sonication and ultracentrifugation of rat heart mitochondria. A combination of open column chromatography, high pressure liquid chromatography (HPLC), and discontinuous polyacrylamide disc gel electrophoresis was used. The key step in the procedure was hydrophobic interaction chromatography on HPLC. The final purification step was polyacrylamide disc gel electrophoresis where the enzyme appeared as a doublet. When electroeluted from the gel, each of these bands had the same specific activity demonstrating that there are two forms of the purified enzyme which differ slightly in electrical charge. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, these two enzyme forms appeared as a single band with a molecular mass of 43 kDa. Size exclusion chromatography on Sephacryl S-100 identified the enzyme as a 50-kDa protein. These experiments argue against the existence of a dimeric form of this enzyme. The ratio of enzyme activity with leucine (0.84), valine (0.88), or glutamate (0.66) as amino acid substrate versus isoleucine remained constant throughout the purification procedure. Specific activity of the final preparation was 66 units/mg of enzyme protein. Polyclonal antibodies against the purified enzyme were raised in rabbits. On an immunoblot the antiserum recognized a 43-kDa protein in the 100,000 x g supernatant from a rat heart mitochondrial sonicate but did not recognize any proteins in rat brain cytosol. Quantitative immunodot assay resulted in an estimated enzyme content of about 100 micrograms of branched chain aminotransferase protein/g of heart, wet weight. Finally, 97% of the heart branched chain aminotransferase activity could be neutralized by the antiserum, but the antiserum would not neutralize aminotransferase activity in brain cytosol. These data suggest that close sequence homology does not exist between the two proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号