首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
In order to understand the relationship between the chromosomal damage detectable at the first mitosis after mutagen treatment and the induced mitotic delay we studied the time pattern of both mitotic indices and chromosomal aberration frequencies in human lymphocytes treated in G1 with mitomycin C (2.5 microM) and cultured in vitro in the presence of 5-bromo-2'-deoxyuridine. Mitotic delay was observed in treated cells cultured for 81 h. At this point an increase in the frequency of chromosomal aberrations is evident and a higher proportion of abnormal cells enters mitosis, the long delay being due to the extensiveness of DNA damage. The importance of cell cycle progression for the detection of the maximal amount of induced chromosomal damage is discussed.  相似文献   

2.
3.
Human blood lymphocytes were irradiated with hard X-rays, stimulated with phytohaemagglutinin (PHA), and grown in presence of amethopterin to accumulate the responding cells at the GI/S boundary of the first cell cycle in vitro. After reversal of the GI/S block with exogenous thymidine, the frequencies of asymmetric chromosome exchanges in relation to the position of metaphases within the first generation mitotic wave were compared. Significant differences of aberration yields within replicate culture series were found in several experiments. A gradual increase of aberration frequencies with increasing duration of S + G2 phases was the most constant feature encountered. In addition, in two parallel series of cultures from one donor, the highest frequency of aberrations was found in samples corresponding to the shortest S+G2 phase duration. A significant contribution of selective mitotic delay of aberration-carrying cells to the distribution of aberration frequencies was excluded. Therefore, it was inferred that the results reflect a true variability of radiosensitivity among the PHA-responsive cells, probably of a discontinuos character, ranging over the ratio of two.  相似文献   

4.
5.
Summary Human lymphocytes were cultured for 40, 42 and 44h and analysed for the number of 1st and 2nd division metaphases using the BrdU-Giemsa technique. The most suitable time to obtain the majority of cells in their 1st division concomittant with an adequate mitotic index was 42h. It is recommended that laboratories use sister chromatid differential staining to determine the most suitable culture time for the analysis of 1st division metaphases. This will permit accurate comparisons between individuals and laboratories to be made.  相似文献   

6.
G2 chromosomal radiosensitivity in Fanconi's anemia   总被引:6,自引:0,他引:6  
Both the peripheral lymphocytes from 4 patients affected with the inherited disease Fanconi's anemia (FA), and tissue-culture fibroblasts from skin biopsies from 3 patients similarly affected were found to be about twice as sensitive to the induction of chromatid-type chromosomal aberrations by X-rays administratered in the G2 phase of the cell cycle as cells from normal controls. Using tritiated thymidine labelling of peripheral lymphocytes and of cultured fibroblasts, it was determined that 3 affected patients and 3 normal controls all had similar percent labeled mitoses (PLM) curves, so the increased induced aberration yields seen in the FA cells do not appear to be simply a consequences of a longer than normal G2 phase of the cell cycle.  相似文献   

7.
Lymphocytes from individual patients undergoing radiolabeled immunoglobulin therapy have been examined both for chromosome aberrations expressed immediately upon explant, or for chromosome aberrations induced by a subsequent challenge of gamma-rays after PHA-stimulated proliferation. Despite interpatient variation, there is strong correlation between levels of chromosome aberrations observed in the initial mitosis after mitogenic stimulation and levels induced by a challenge dose of radiation in replicate cultures after several cell cycles of growth. These data indicated that even after proliferation, human lymphocytes retain a memory of in vivo exposure to ionizing radiation that can be observed by challenge with a clastogenic agent. This persistent hypersensitivity occurs at high frequency, suggesting that it may be related to initial steps in multistage carcinogenesis.  相似文献   

8.
Summary Ataxia-telangiectasia (A-T) is an autosomal recessive disease involving chromosomal instability, susceptibility to cancer and X-ray hypersensitivity. The latter two features are expressed to a limited extent in the heterozygous carriers of A-T mutations. Although fibroblast lines from A-T heterozygotes clearly show increased susceptibility to the lethal effect of X-irradiation, the difference in post-irradiation survival between cell lines and normal controls is not always large enough to allow the use of X-ray sensitivity as a laboratory assay for carrier detection in A-T. Recently, we have shown in a blind study, that the extent of chromatid damage induced in the G2 phase of the cell cycle by moderate doses of X-rays is markedly higher in A-T heterozygous cells than in normal controls. We have now applied this test to 6 additional obligatory heterozygotes and 24 individuals with different risks of being A-T carriers, from three Israeli A-T families. All 6 cell lines from the obligatory heterozygotes showed the typical hypersensitivity to the clastogenic action of X-rays in G2; of the 24 cell lines with unknown A-T genotype, 16 showed the same hypersensitivity, and 8 responded in a normal way. The proportion of cell lines showing the A-T-heterozygous phenotype was in accord with the expected value, based on Mendelian chance calculations. Since these observations were made, a daughter of two hypersensitive parents in one of these families has been diagnosed as having A-T. This confirmed the presumed A-T heterozygosity of the parents, as indicated by the laboratory assay.  相似文献   

9.
10.
11.
Age related cytotoxicity of stannic chloride was evaluated in human lymphocytes considering mitotic index (MI), damaged cell (DC), chromosome aberration (CA), and micronuclei formation (MNC) as endpoints. Significant elevation of DCs, CAs, MNCs, and reduction of MI were observed in all classified age groups compared to each control set. The mean frequencies of abnormalities show a statistically significant increase with subject's age. Linearity of the effect of age was common for both untreated and treated lymphocytes of both sexes.  相似文献   

12.
Blood samples obtained from patients with various types of inborn chromosome abnormalities were exposed to γ-rays and the relationship between the chromosome constitution and chromosomal radiosensitivity of lymphocytes was studied by analysing types and frequencies of radiation-induced chromosome aberrations. The results showed that the chromosomal radiosensitivity was consistently higher in the cells which were trisomic for the whole or a part of a chromosome than in the cells with normal karyotype, but it was not significantly influenced by the monosomic conditions, reciprocal translocation and inversion. Age of the subjects also affected the chromosomal radiosensitivity, which was elevated in the neonates.

The analysis of chromosome aberrations showed that the high frequency of radiation-induced chromosome aberrations was due to the increased production of exchange aberrations and that the level of deletions was not affected either by factors of the chromosome constitution or of the age of the subject. A hypothesis to explain the increased chromosomal radiosensitivity of the trisomic cells was given in line with the effects of altered enzyme activity on the production of exchange aberrations.

The parallelism between the increased chromosomal radiosensitivity in the trisomic cells and the susceptibility of the affected persons to neoplasia allowed us to recognize that the trisomic cells are particularly cancer-prone and that the illegitimate repair of chromosome damage, which is intrinsic to the trisomic cells, may play an important role in the development of cancer.  相似文献   


13.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is the key functional element in the DNA-PK complex that drives nonhomologous end joining (NHEJ), the predominant DNA double-strand break (DSB) repair mechanism operating to rejoin such breaks in mammalian cells after exposure to ionizing radiation. It has been reported that DNA-PKcs phosphorylation and kinase activity are critical determinants of radiosensitivity, based on responses reported after irradiation of asynchronously dividing populations of various mutant cell lines. In the present study, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase activity) were examined after exposure of synchronized G(1) cells to (137)Cs γ rays. DNA-PKcs mutant cells defective in phosphorylation at multiple sites within the T2609 cluster or within the PI3K domain displayed extreme radiosensitivity. Cells defective at the S2056 cluster or T2609 single site alone were only mildly radiosensitive, but cells defective at even one site in both the S2056 and T2609 clusters were maximally radiosensitive. Thus a synergism between the capacity for phosphorylation at the S2056 and T2609 clusters was found to be critical for induction of radiosensitivity.  相似文献   

14.
15.
The kinetics of thymidine uptake in human peripheral lymphocytes stimulated by allogenic cells, antigen E (ragweed allergen) and a variety of mitogens can generally be divided into four consecutive phases. First, a lag period with no increase in thymidine uptake, then a short period of rapid change in uptake, followed by a log-linear growth period and finally a decay phase. In this report we examine in detail the characteristics of the third, log-linear growth phase. Since, as discussed in the preceding paper, thymidine uptake is proportional to the number of cells acumulating thymidine, we can calculate from the log-linear growth period an apparent doubling time. We show that for five different stimulating agents the cells reach a log-linear growth phase of varying length and that the doubling times show little variation. This invariance indicates that, despite possible variation in cell death and recruitment rates, the rate of proliferation is in all cases dominated by the generation time of human lymphocytes.  相似文献   

16.
Summary To investigate whether the nuclear division cycle could be related to cycle-specific changes in repair of ionizing radiation damage, we have determined the survival curves after -irradiation of samples taken frequently from synchronously dividing cultures of Saccharomyces cerevisiae cells. Survival was low in G1 and increased during S, reaching a maximum around the end of the S phase, which was maintained in G2. The shape of the survival curves for samples taken from later stages revealed a rapid cycle-specific drop in the radioresistance of individual cells. A simple model was formulated on the assumption that survival is greatly enhanced by the action of an enzymatic repair mechanism which requires duplicated but unsegregated DNA as a substrate. By taking into account the measurable age heterogeneity of samples taken from the synchronous cultures, this model was shown to fit the survival data closely. For an individual cell, the increasing survival during the S phase is thus attributable to a rising fraction of duplicated genome, whereas the rapid decrease in radioresistance at a later stage in the cell cycle may be interpreted as due to the final physical separation of sister chromatids. The start of the latter event was timed to the stage in mitosis when the nucleus begins to move towards the neck of the bud. The data are consistent with the hypothesis that the high radioresistance of cells in late S and G2 is due to the repair of double-stranded DNA breaks by a process involving recombination between sister chromatids.  相似文献   

17.
18.
19.
Contrary to an earlier report, peripheral lymphocytes from 4 AT patients were not found to exhibit higher yields of unequivocal chromosome type aberrations following irradiation in the G0 phase of the cell cycle, providing that only first post-irradiation metaphases were included in the samples (ensured by 5-bromodeoxyuridine (BrdU) incorporation and differential fluorescence or Giemsa staining). We were able, however, to confirm the earlier-reported increase in chromatid-type aberrations in the G0-irradiated cells. AT lymphocytes were found to experience more cell-cycle delay following G0 irradiation than normal cells. These observations appear consistent with the damaged base excision DNA-repair defect reported for AT cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号