首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polyphosphoinositides, PIP and PIP2, have been proposed to regulate actin polymerization in vivo because they dissociate actin/gelsolin complexes in vitro. We tested this hypothesis by comparing the ability of EGF and bradykinin to affect PI metabolism and the actin cytoskeleton in A431 cells. EGF, but not bradykinin, was found to induce ruffling and dissociation of actin/gelsolin complexes in these cells. However, both EGF and bradykinin stimulated the accumulation of inositol phosphates in [3H]inositol-labeled cells indicating that stimulation of PI turnover is not sufficient for the induction of changes in actin/gelsolin complex levels. EGF stimulated a twofold increase in the level of PIP in A431 cells. Other phosphoinositide levels were not markedly altered. Treatment of the cells with cholera toxin abrogated the EGF-induced rise in PIP levels without altering the dissociation of actin from gelsolin. These data indicate that increases in PIP and/or PIP2 are not necessary for dissociation of actin/gelsolin complexes. Overall, these experiments suggest that in A431 cells, the effects of EGF on the actin cytoskeleton are unlikely to be mediated through changes in PIP or PIP2 levels.  相似文献   

2.
In this paper we describe an experimental investigation of the mechanism of motility of vertebrate cells. Human glioma cells were treated with neomycin, an inhibitor of the phosphatidylinositol cycle; and changes in cell motility and the cytoskeleton were examined by video, fluorescence, and scanning electron microscopy and by cytofluorometry. Neomycin stimulates a single protrusion of lamellipodia from the cell margin, which is correlated with an initial rapid decrease in the amount of F-actin throughout the cell, especially at the cell edge; the fragmentation of actin filaments within the lamellipodia; and the subsequent de novo polymerization of F-actin in a marginal band at the leading edge of lamellipodia. Changes in F-actin are paralleled by changes in the distribution and amount of gelsolin. These results support the hypothesis that protrusion is initiated by the gelsolin-mediated severing and subsequent depolymerization of cortical actin filaments, which weakens the cell cortex, allowing hydrostatic or gel osmotic pressure to force the cell margin to protrude. The accompanying polymerization of filaments actin at the leading edge of the protrusion may stabilize the protrusion and support its expansion.  相似文献   

3.
Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the actin cytoskeleton controlling directional movement.  相似文献   

4.
Actin modulating proteins that bind polyphosphoinositides, such as phosphatidylinositol 4, 5-bisphosphate (PIP2), can potentially participate in receptor signaling by restructuring the membrane cytoskeleton and modulating second messenger generation through the phosphoinositide cycle. We examined these possibilities by overexpressing CapG, an actin filament end capping, Ca(2+)- and polyphosphoinositide-binding protein of the gelsolin family. High level transient overexpression decreased actin filament staining in the center of the cells but not in the cell periphery. Moderate overexpression in clonally selected cell lines did not have a detectible effect on actin filament content or organization. Nevertheless, it promoted a dose-dependent increase in rates of wound healing and chemotaxis. The motile phenotype was similar to that observed with gelsolin overexpression, which in addition to capping, also severs and nucleates actin filaments. CapG overexpressing clones are more responsive to platelet-derived growth factor than control- transfected clones. They form more circular dorsal membrane ruffles, have higher phosphoinositide turnover, inositol 1,4,5-trisphosphate generation and Ca2+ signaling. These responses are consistent with enhanced PLC gamma activity. Direct measurements of PIP2 mass showed that the CapG effect on PLC gamma was not due primarily to an increase in the PIP2 substrate concentration. The observed changes in cell motility and membrane signaling are consistent with the hypothesis that PIP(2)-binding actin regulatory proteins modulate phosphoinositide turnover and second messenger generation in vivo. We infer that CapG and related proteins are poised to coordinate membrane signaling with actin filament dynamics following cell stimulation.  相似文献   

5.
Cell migration involves dynamic regulation of the actin cytoskeleton, which exhibits rapid actin polymerization at the leading edge of migrating cells. This process relies on regulated recruitment of actin nucleators and actin-binding proteins to the leading edge to polymerize new actin filaments. Many of these proteins have been identified, including the actin-related protein (Arp) 2/3 complex, which has emerged as the core player in the initiation of actin polymerization. However, the functional coordination of these proteins is unclear. Previously, we have demonstrated that the 14-kDa phosphohistidine phosphatase (PHP14) is involved in cell migration regulation and affects actin cytoskeleton reorganization. Here, we show that PHP14 may regulate actin remodeling directly and play an important role in dynamic regulation of the actin cytoskeleton. We observed a colocalization of PHP14 with Arp3 and F-actin at the leading edge of migrating cells. Moreover, PHP14 was recruited to the actin remodeling sites in parallel with Arp3 during lamellipodia formation. Furthermore, PHP14 knockdown impaired Arp3 localization at the leading edge of lamellipodia, as well as lamellipodia formation. Most importantly, we found that PHP14 was a novel F-actin-binding protein, displaying an Arp2/3-dependent localization to the leading edge. Collectively, our results indicated a crucial role for PHP14 in the dynamic regulation of the actin cytoskeleton and cell migration.  相似文献   

6.
细胞运动、细胞迁移与细胞骨架研究进展   总被引:1,自引:0,他引:1  
苗龙 《生物物理学报》2007,23(4):281-289
细胞定向运动与细胞骨架的动态循环密切相关。运动细胞在其伪足前沿依靠细胞骨架的不断聚合推动细胞膜的前进,在基部靠近细胞体部位通过细胞骨架的不断解聚收缩拖拉细胞体向前运动,细胞骨架的聚合与解聚通过伪足与支撑表面的吸附与解吸附而偶连。肌动蛋白组成的微丝骨架是大多数运动细胞的主要成分。外界刺激引起微丝细胞骨架动态变化的信号通路已逐步明了。线虫精子细胞的运动行为与阿米巴变形运动相似,但是在线虫精子细胞中没有肌动蛋白,而是以精子主要蛋白为基础形成细胞骨架驱动精子细胞的运动。与肌动蛋白不同,精子主要蛋白没有分子极性、ATP结合位点和马达蛋白。通过比较研究以上两种运动体系将有助于在分子水平上进一步阐明细胞运动的机理。  相似文献   

7.
The antiepileptic drug valproic acid (VPA) and teratogenic VPA analogues have been demonstrated to inhibit cell motility and affect cell morphology. We here show that disruption of microtubules or of microfilaments by exposure to nocodazole or cytochalasin D had different effects on morphology of control cells and cells treated with VPA, indicating that VPA affected the cytoskeletal determinants of cell morphology. Furthermore, VPA treatment induced an increase of F-actin, and of FAK, paxillin, vinculin, and phosphotyrosine in focal adhesion complexes. These changes were accompanied by increased adhesion of VPA-treated cells to the extracellular matrix. Treatment with an RGD-containing peptide reducing integrin binding to components of the extracellular matrix partially reverted the motility inhibition induced by VPA, indicating that altered adhesion contributed to, but was not the sole reason for the VPA mediated inhibition of motility. In addition it is shown that the actomyosin cytoskeleton of VPA-treated cells was capable of contraction upon exposure to ATP, indicating that the reduced motility of VPA-treated cells was not caused by an inhibition of actomyosin contraction. On the other hand, VPA caused a redistribution of the actin severing protein gelsolin, and left the cells unable to respond to treatment with a gelsolin-peptide known to reduce the amount of gelsolin bound to phosphatidylinositol bisphosphate (PIP2), leaving a larger amount of the protein in a potential actin binding state. These findings indicate that VPA affects cell morphology and motility through interference with the dynamics of the actin cytoskeleton.  相似文献   

8.
We recently reported that SPIN90 is able to bind with several proteins involved in regulating actin cytoskeleton networks, including dynamin, WASP, β PIX, and Nck. Based on these findings, we investigated how SPIN90 regulates the actin cytoskeleton and promotes actin assembly. This study demonstrated that aluminium fluoride-induced localization of SPIN90 to lamellipodia requires amino acids 582-722 at the SPIN90 C-terminus, which is also essential for F-actin binding and Arp2/3 complex mediated polymerization of actin into branched actin filaments. Furthermore, after deletion of the F-actin binding region (582-722 SPIN90) failed to localize at the membrane edge and was unable to promote lamellipodia formation, suggesting that the F-actin binding region in the SPIN90 C-terminus is essential for the formation of branched actin networks and regulation of the actin cytoskeleton at the leading edge of cells.  相似文献   

9.
To acquire fertilization competence, spermatozoa should undergo several biochemical changes in the female reproductive tract, known as capacitation. The capacitated spermatozoon can interact with the egg zona pellucida resulting in the occurrence of the acrosome reaction, a process that allowed its penetration into the egg and fertilization. Sperm capacitation requires actin polymerization, whereas F-actin must disperse prior to the acrosome reaction. Here, we suggest that the actin-severing protein, gelsolin, is inactive during capacitation and is activated prior to the acrosome reaction. The release of bound gelsolin from phosphatidylinositol 4,5-bisphosphate (PIP(2)) by PBP10, a peptide containing the PIP(2)-binding domain of gelsolin, or by activation of phospholipase C, which hydrolyzes PIP(2), caused rapid Ca(2+)-dependent F-actin depolymerization as well as enhanced acrosome reaction. Using immunoprecipitation assays, we showed that the tyrosine kinase SRC and gelsolin coimmunoprecipitate, and activating SRC by adding 8-bromo-cAMP (8-Br-cAMP) enhanced the amount of gelsolin in this precipitate. Moreover, 8-Br-cAMP enhanced tyrosine phosphorylation of gelsolin and its binding to PIP(2(4,5)), both of which inactivated gelsolin, allowing actin polymerization during capacitation. This actin polymerization was blocked by inhibiting the Src family kinases, suggesting that gelsolin is activated under these conditions. These results are further supported by our finding that PBP10 was unable to cause complete F-actin breakdown in the presence of 8-Br-cAMP or vanadate. In conclusion, inactivation of gelsolin during capacitation occurs by its binding to PIP(2) and tyrosine phosphorylation by SRC. The release of gelsolin from PIP(2) together with its dephosphorylation enables gelsolin activation, resulting in the acrosome reaction.  相似文献   

10.
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays an important role during actin polymerization and is produced by the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KI), which are activated by phosphatidic acid (PA). As diacylglycerol kinases (DGKs) generate PA by phosphorylating diacylglycerol (DAG), we investigated whether DGKs were involved in controlling PIP2 levels by regulating PIP5KI activity. Here we show that expression of DGKzeta significantly enhances PIP5KIalpha activity in thrombin-stimulated HEK293 cells, and DGK activity is required for this stimulation. We also observed that DGKzeta co-immunoprecipitated and co-localized with PIP5KIalpha, suggesting that they reside in a regulated signaling complex. To explore the role of DGKzeta in actin polymerization, we examined the subcellular distribution of DGKzeta, PIP5KIalpha and actin, and found that these proteins co-localized with actin in lamellipodial protrusions. Supporting that PIP5KIalpha regulation occurs at the sites of actin polymerization, we found that PIP2 also accumulated in the actin-rich regions of lamellipodia. Significantly, in wounding assays, DGKzeta, PIP5KIalpha and PIP2 accumulated at the leading edge of migrating A172 cells, where massive actin polymerization is known to occur. Combined, these data support a novel function for DGKzeta: by generating PA, it stimulates PIP5KIalpha activity to increase local PIP2, which regulates actin polymerization.  相似文献   

11.
To investigate the mechanisms of protrusion in vertebrate cells, the primary event in cell motility, human fibroblasts were treated with neomycin, an inhibitor of the phosphatidylinositol cycle, to induce protrusion. Changes in cell motility and the cytoskeleton were examined by video, fluorescence, scanning electron, and confocal microscopy and by cytofluorometry. Protrusion in neomycin-treated human fibroblasts is correlated with a transient overall decrease in F-actin followed by an increase in F-actin at the leading edge of the protruding lamella. In growing lamellae, F-actin is organized in a marginal band at the leading edge. Although actin is present in the lamella behind the leading edge, very little of it is F-actin. Scanning electron microscopy of detergent-extracted cells reveals a band of dense filaments at the leading edge, corresponding to the marginal band of F-actin seen in fluorescently labeled cells, and a sparse population of short, fragmented filaments, in the rest of the lamella. Gelsolin is colocalized with F-actin in the marginal band and is also present in the lamella where F-actin is largely absent. The data support the hypothesis that the protrusion is initiated by the breakdown of cortical actin filaments, possibly mediated by gelsolin, whereas expansion of the protrusion requires de novo polymerization of actin filaments at the leading edge.  相似文献   

12.
The polyphosphoinositides phosphatidylinositol 4-monophosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) inactivate the actin filament-severing proteins villin and gelsolin and dissociate them from monomeric and polymeric actin. A potential polyphosphoinositide- (PPI) binding site of human plasma gelsolin regulating filament severing has been localized to the region between residues 150-169 and to the corresponding region in villin which occurs in the second of six homologous domains present in both proteins. Synthetic peptides based on these sequences bind tightly to both PIP and PIP2, in either micelles or bilayer vesicles, compete with gelsolin for binding to PPIs, and dissociate gelsolin-PIP2 complexes, restoring severing activity to the protein. These peptides also bind with moderate affinity to F-actin, suggesting that inactivation of the severing function of the intact proteins by PPIs results from competition between actin and PPIs for a critical binding site on gelsolin-villin. The PPI-binding peptides contain numerous basic amino acids, but their effects on PPIs are far greater than those of Arg or Lys oligomers, a highly basic peptide derived from the calmodulin-binding site of myristoylated, alanine-rich kinase C substrate protein, or the 5-kDa actin-binding protein thymosin beta-4, suggesting that specific aspects of the primary and secondary structure of these basic peptides are important for their interaction with the acidic headgroups of PPIs. In addition to elucidating the structure of PIP2-binding sites in gelsolin, the results describe a sensitive assay for phosphoinositide-binding molecules based on their ability to prevent inhibition of gelsolin function.  相似文献   

13.
Acquisition of motility is an important step in malignant progression of tumor cells and involves dynamic changes in actin filament architecture orchestrated by many actin binding proteins. A role for the actin-binding protein gelsolin has been demonstrated in fibroblast motility. In this report, we investigated the role of gelsolin in bronchial epithelial cell motility. The non-tumorigenic bronchial epithelial cell line, NL20 migrated towards EGF in a modified Boyden chamber cell motility assay. However, the tumorigenic NL20-TA cell line derived from the NL20 cells and lacking gelsolin, did not migrate towards EGF. Ectopic expression of gelsolin in NL20-TA cells restored the EGF response, while motility of NL20-TA derived cells towards serum, PDGF, and fibronectin was independent of gelsolin expression. PI3-kinase inhibition failed to block EGF-stimulated motility in gelsolin transfected NL20-TA cells. Furthermore, EGF stimulated a motility response in cells lacking gelsolin in the presence of fibronectin or fibrinogen that was blocked with PI3-kinase inhibition. Thus, EGF-stimulated motility in NL20 cells and its derivatives are gelsolin dependent and PI3-kinase independent, while fibronectin and fibrinogen enhances EGF-stimulated motility through a pathway independent of gelsolin and dependent upon PI3-kinase.  相似文献   

14.
Cell motility is produced by changes in the dynamics and organization of actin filaments. The aim of the experiments described here was to test whether growing neurites contain two actin-binding proteins, gelsolin and profilin, that regulate polymerization of actin and affect non-neuronal cell motility. The distribution of gelsolin, profilin and the microfilaments was compared by immunocytochemistry of leech neurons growing in culture. We observed that microfilaments are enriched in the peripheral motile areas of the neurites. Both gelsolin and profilin are also concentrated in these regions. Gelsolin is abundant in filopodia and is associated with single identifiable microfilament bundles in lamellipodia. Profilin is not prominent in filopodia and shows a diffuse staining pattern in lamellipodia. The colocalization of gelsolin and profilin in motile, microfilament-rich areas supports the hypothesis that they synergistically regulate the actin dynamics that underlie neurite growth.  相似文献   

15.
The actin cytoskeleton has been shown to be involved in the regulation of sodium-selective channels in non-excitable cells. However, the molecular mechanisms underlying the changes in channel function remain to be defined. In the present work, inside-out patch experiments were employed to elucidate the role of submembranous actin dynamics in the control of sodium channels in human myeloid leukemia K562 cells. We found that the application of cytochalasin D to the cytoplasmic surface of membrane fragments resulted in activation of non-voltage-gated sodium channels of 12 picosiemens conductance. Similar effects could be evoked by addition of the actin-severing protein gelsolin to the bath cytosol-like solution containing 1 microm [Ca(2+)](i). The sodium channel activity induced by disassembly of submembranous microfilaments with cytochalasin D or gelsolin could be abolished by intact actin added to the bath cytosol-like solution in the presence of 1 mm MgCl(2) to induce actin polymerization. In the absence of MgCl(2), addition of intact actin did not abolish the channel activity. Moreover, the sodium currents were unaffected by heat-inactivated actin or by actin whose polymerizability was strongly reduced by cleavage with specific Escherichia coli A2 protease ECP32. Thus, the inhibitory effect of actin on channel activity was observed only under conditions promoting rapid polymerization. Taken together, our data show that sodium channels are directly controlled by dynamic assembly and disassembly of submembranous F-actin.  相似文献   

16.
Actin filament pointed-end dynamics are thought to play a critical role in cell motility, yet regulation of this process remains poorly understood. We describe here a previously uncharacterized tropomodulin (Tmod) isoform, Tmod3, which is widely expressed in human tissues and is present in human microvascular endothelial cells (HMEC-1). Tmod3 is present in sufficient quantity to cap pointed ends of actin filaments, localizes to actin filament structures in HMEC-1 cells, and appears enriched in leading edge ruffles and lamellipodia. Transient overexpression of GFP-Tmod3 leads to a depolarized cell morphology and decreased cell motility. A fivefold increase in Tmod3 results in an equivalent decrease in free pointed ends in the cells. Unexpectedly, a decrease in the relative amounts of F-actin, free barbed ends, and actin-related protein 2/3 (Arp2/3) complex in lamellipodia are also observed. Conversely, decreased expression of Tmod3 by RNA interference leads to faster average cell migration, along with increases in free pointed and barbed ends in lamellipodial actin filaments. These data collectively demonstrate that capping of actin filament pointed ends by Tmod3 inhibits cell migration and reveal a novel control mechanism for regulation of actin filaments in lamellipodia.  相似文献   

17.
Polarized cell movement is triggered by the development of a PtdIns(3,4,5)P(3) gradient at the membrane, which is followed by rearrangement of the actin cytoskeleton. The WASP family verprolin homologous protein (WAVE) is essential for lamellipodium formation at the leading edge by activating the Arp2/3 complex downstream of Rac GTPase. Here, we report that WAVE2 binds to PtdIns(3,4,5)P(3) through its basic domain. The amino-terminal portion of WAVE2, which includes the PtdIns(3,4,5)P(3)-binding sequence, was localized at the leading edge of lamellipodia induced by an active form of Rac (RacDA) or by treatment with platelet-derived growth factor (PDGF). Production of PtdIns(3,4,5)P(3) at the cell membrane by myristoylated phosphatidylinositol-3-OH kinase (PI(3)K) is sufficient to recruit WAVE2 in the presence of dominant-negative Rac and latrunculin, demonstrating that PtdIns(3,4,5)P(3) alone is able to recruit WAVE2. Expression of a full-length mutant of WAVE2 that lacks the lipid-binding activity inhibited proper formation of lamellipodia induced by RacDA. These results suggest that one of the products of PI(3)K, PtdIns(3,4,5)P(3), recruits WAVE2 to the polarized membrane and that this recruitment is essential for lamellipodium formation at the leading edge.  相似文献   

18.
Phosphatidylinositol 4,5 bisphosphate (PIP(2)) is widely implicated in cytoskeleton regulation, but the mechanisms by which PIP(2) effect cytoskeletal changes are not defined. We used recombinant adenovirus to infect CV1 cells with the mouse type I phosphatidylinositol phosphate 5-kinase alpha (PIP5KI), and identified the players that modulate the cytoskeleton in response to PIP(2) signaling. PIP5KI overexpression increased PIP(2) and reduced phosphatidylinositol 4 phosphate (PI4P) levels. It promoted robust stress-fiber formation in CV1 cells and blocked PDGF-induced membrane ruffling and nucleated actin assembly. Y-27632, a Rho-dependent serine/threonine protein kinase (ROCK) inhibitor, blocked stress-fiber formation and inhibited PIP(2) and PI4P synthesis in cells. However, Y-27632 had no effect on PIP(2) synthesis in lysates, although it inhibited PI4P synthesis. Thus, ROCK may regulate PIP(2) synthesis by controlling PI4P availability. PIP5KI overexpression decreased gelsolin, profilin, and capping protein binding to actin and increased that of ezrin. These changes can potentially account for the increased stress fiber and nonruffling phenotype. Our results establish the physiological role of PIP(2) in cytoskeletal regulation, clarify the relation between Rho, ROCK, and PIP(2) in the activation of stress-fiber formation, and identify the key players that modulate the actin cytoskeleton in response to PIP(2).  相似文献   

19.
The appropriate regulation of the actin cytoskeleton is essential for cell movement, changes in cell shape, and formation of membrane protrusions like lamellipodia and filopodia. Moreover, several regulatory proteins affecting actin dynamics have been identified in the motile regions of cells. Here, we provide evidence for the involvement of SPIN90 in the regulation of actin cytoskeleton and actin comet tail formation. SPIN90 was distributed throughout the cytoplasm in COS-7 cells, but exposing the cells to platelet-derived growth factor (PDGF) caused a redistribution of SPIN90 to the cell cortex and the formation of lamellipodia (or membrane ruffles), both of which were dramatically inhibited in SPIN90-knockdown cells. In addition, the binding of the C terminus of SPIN90 with both the Arp2/3 complex (actin-related proteins Arp 2 and Arp 3) and G-actin activates the former, leading to actin polymerization in vitro. And when coexpressed with phosphatidylinositol 4-phosphate 5 kinase, SPIN90 was observed within actin comet tails. Taken these findings suggest that SPIN90 participates in reorganization of the actin cytoskeleton and in actin-based cell motility.  相似文献   

20.
Viscoelastic changes of the lamellipodial actin cytoskeleton are a fundamental element of cell motility. Thus, the correlation between the local viscoelastic properties of the lamellipodium (including the transitional region to the cell body) and the speed of lamellipodial extension is studied for normal and malignantly transformed fibroblasts. Using our atomic force microscopy-based microrheology technique, we found different mechanical properties between the lamellipodia of malignantly transformed fibroblasts (H-ras transformed and SV-T2 fibroblasts) and normal fibroblasts (BALB 3T3 fibroblasts). The average elastic constants, K, in the leading edge of SV-T2 fibroblasts (0.48 +/- 0.51 kPa) and of H-ras transformed fibroblasts (0.42 +/- 0.35 kPa) are significantly lower than that of BALB 3T3 fibroblasts (1.01 +/- 0.40 kPa). The analysis of time-lapse phase contrast images shows that the decrease in the elastic constant, K, for malignantly transformed fibroblasts is correlated with the enhanced motility of the lamellipodium. The measured mean speeds are 6.1 +/- 4.5 microm/h for BALB 3T3 fibroblasts, 13.1 +/- 5.2 microm/h for SV-T2 fibroblasts, and 26.2 +/- 11.5 microm/h for H-ras fibroblasts. Furthermore, the elastic constant, K, increases toward the cell body in many instances which coincide with an increase in actin filament density toward the cell body. The correlation between the enhanced motility and the decrease in viscoelastic moduli supports the Elastic Brownian Ratchet model for driving lamellipodia extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号