首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conserved patterns of cell movements during vertebrate gastrulation   总被引:1,自引:0,他引:1  
Vertebrate embryogenesis entails an exquisitely coordinated combination of cell proliferation, fate specification and movement. After induction of the germ layers, the blastula is transformed by gastrulation movements into a multilayered embryo with head, trunk and tail rudiments. Gastrulation is heralded by formation of a blastopore, an opening in the blastula. The axial side of the blastopore is marked by the organizer, a signaling center that patterns the germ layers and regulates gastrulation movements. During internalization, endoderm and mesoderm cells move via the blastopore beneath the ectoderm. Epiboly movements expand and thin the nascent germ layers. Convergence movements narrow the germ layers from lateral to medial while extension movements elongate them from head to tail. Despite different morphology, parallels emerge with respect to the cellular and genetic mechanisms of gastrulation in different vertebrate groups. Patterns of gastrulation cell movements relative to the blastopore and the organizer are similar from fish to mammals, and conserved molecular pathways mediate gastrulation movements.  相似文献   

2.
During vertebrate gastrulation, mesodermal and ectodermal cells undergo convergent extension, a process characterised by prominent cellular rearrangements in which polarised cells intercalate along the medio-lateral axis leading to elongation of the antero-posterior axis. Recently, it has become evident that a noncanonical Wnt/Frizzled (Fz)/Dishevelled (Dsh) signalling pathway, which is related to the planar-cell-polarity (PCP) pathway in flies, regulates convergent extension during vertebrate gastrulation. Here we isolate and functionally characterise a zebrafish homologue of Drosophila prickle (pk), a gene that is implicated in the regulation of PCP. Zebrafish pk1 is expressed maternally and in moving mesodermal precursors. Abrogation of Pk1 function by morpholino oligonucleotides leads to defective convergent extension movements, enhances the silberblick (slb)/wnt11 and pipetail (Ppt)/wnt5 phenotypes and suppresses the ability of Wnt11 to rescue the slb phenotype. Gain-of-function of Pk1 also inhibits convergent extension movements and enhances the slb phenotype, most likely caused by the ability of Pk1 to block the Fz7-dependent membrane localisation of Dsh by downregulating levels of Dsh protein. Furthermore, we show that pk1 interacts genetically with trilobite (tri)/strabismus to mediate the caudally directed migration of cranial motor neurons and convergent extension. These results indicate that, during zebrafish gastrulation Pk1 acts, in part, through interaction with the noncanonical Wnt11/Wnt5 pathway to regulate convergent extension cell movements, but is unlikely to simply be a linear component of this pathway. In addition, Pk1 interacts with Tri to mediate posterior migration of branchiomotor neurons, probably independent of the noncanonical Wnt pathway.  相似文献   

3.
4.
E-cadherin is a member of the classical cadherin family and is known to be involved in cell-cell adhesion and the adhesion-dependent morphogenesis of various tissues. We isolated a zebrafish mutant (cdh1(rk3)) that has a mutation in the e-cadherin/cdh1 gene. The mutation rk3 is a hypomorphic allele, and the homozygous mutant embryos displayed variable phenotypes in gastrulation and tissue morphogenesis. The most severely affected embryos displayed epiboly delay, decreased convergence and extension movements, and the dissociation of cells from the embryos, resulting in early embryonic lethality. The less severely affected embryos survived through the pharyngula stage and showed flattened anterior neural tissue, abnormal positioning and morphology of the hatching gland, scattered trigeminal ganglia, and aberrant axon bundles from the trigeminal ganglia. Maternal-zygotic cdh1(rk3) embryos displayed epiboly arrest during gastrulation, in which the enveloping layer (EVL) and the yolk syncytial layer but not the deep cells (DC) completed epiboly. A similar phenotype was observed in embryos that received antisense morpholino oligonucleotides (cdh1MO) against E-cadherin, and in zebrafish epiboly mutants. Complementation analysis with the zebrafish epiboly mutant weg suggested that cdh1(rk3) is allelic to half baked/weg. Immunohistochemistry with an anti-beta-catenin antibody and electron microscopy revealed that adhesion between the DCs and the EVL was mostly disrupted but the adhesion between DCs was relatively unaffected in the MZcdh1(rk3) mutant and cdh1 morphant embryos. These data suggest that E-cadherin-mediated cell adhesion between the DC and EVL plays a role in the epiboly movement in zebrafish.  相似文献   

5.
K Joubin  C D Stern 《Cell》1999,98(5):559-571
The organizer is a unique region in the gastrulating embryo that induces and patterns the body axis. It arises before gastrulation under the influence of the Nieuwkoop center. We show that during gastrulation, cell movements bring cells into and out of the chick organizer, Hensen's node. During these movements, cells acquire and lose organizer properties according to their position. A "node inducing center," which emits Vg1 and Wnt8C, is located in the middle of the primitive streak. Its activity is inhibited by ADMP produced by the node and by BMPs at the periphery. These interactions define the organizer as a position in the embryo, whose cellular makeup is constantly changing, and explain the phenomenon of organizer regeneration.  相似文献   

6.
Cell movements during epiboly and gastrulation in zebrafish   总被引:12,自引:0,他引:12  
Beginning during the late blastula stage in zebrafish, cells located beneath a surface epithelial layer of the blastoderm undergo rearrangements that accompany major changes in shape of the embryo. We describe three distinctive kinds of cell rearrangements. (1) Radial cell intercalations during epiboly mix cells located deeply in the blastoderm among more superficial ones. These rearrangements thoroughly stir the positions of deep cells, as the blastoderm thins and spreads across the yolk cell. (2) Involution at or near the blastoderm margin occurs during gastrulation. This movement folds the blastoderm into two cellular layers, the epiblast and hypoblast, within a ring (the germ ring) around its entire circumference. Involuting cells move anteriorwards in the hypoblast relative to cells that remain in the epiblast; the movement shears the positions of cells that were neighbors before gastrulation. Involuting cells eventually form endoderm and mesoderm, in an anterior-posterior sequence according to the time of involution. The epiblast is equivalent to embryonic ectoderm. (3) Mediolateral cell intercalations in both the epiblast and hypoblast mediate convergence and extension movements towards the dorsal side of the gastrula. By this rearrangement, cells that were initially neighboring one another become dispersed along the anterior-posterior axis of the embryo. Epiboly, involution and convergent extension in zebrafish involve the same kinds of cellular rearrangements as in amphibians, and they occur during comparable stages of embryogenesis.  相似文献   

7.
8.
Involving dynamic and coordinated cell movements that cause drastic changes in embryo shape, gastrulation is one of the most important processes of early development. Gastrulation proceeds by various types of cell movements, including convergence and extension, during which polarized axial mesodermal cells intercalate in radial and mediolateral directions and thus elongate the dorsal marginal zone along the anterior-posterior axis [1,2]. Recently, it was reported that a noncanonical Wnt signaling pathway, which is known to regulate planar cell polarity (PCP) in Drosophila [3,4], participates in the regulation of convergent extension movements in Xenopus as well as in the zebrafish embryo [5-8]. The Wnt5a/Wnt11 signal is mediated by members of the seven-pass transmembrane receptor Frizzled (Fz) and the signal transducer Dishevelled (Dsh) through the Dsh domains that are required for the PCP signal [6-8]. It has also been shown that the relocalization of Dsh to the cell membrane is required for convergent extension movements in Xenopus gastrulae. Although it appears that signaling via these components leads to the activation of JNK [9,10] and rearrangement of microtubules, the precise interplay among these intercellular components is largely unknown. In this study, we show that Xenopus prickle (Xpk), a Xenopus homolog of a Drosophila PCP gene [11-13], is an essential component for gastrulation cell movement. Both gain-of-function and loss-of-function of Xpk severely perturbed gastrulation and caused spina bifida embryos without affecting mesodermal differentiation. We also demonstrate that XPK binds to Xenopus Dsh as well as to JNK. This suggests that XPK plays a pivotal role in connecting Dsh function to JNK activation.  相似文献   

9.
M Tada  M L Concha 《Current biology : CB》2001,11(12):R470-R472
A recent study reveals that the propagation of intercellular calcium signals is closely associated with the generation of convergent extension movements during Xenopus gastrulation. Such signals provide a mechanism whereby large populations of cells can communicate to generate orchestrated cell movements.  相似文献   

10.
Ptenb mediates gastrulation cell movements via Cdc42/AKT1 in zebrafish   总被引:1,自引:0,他引:1  
Yeh CM  Liu YC  Chang CJ  Lai SL  Hsiao CD  Lee SJ 《PloS one》2011,6(4):e18702
Phosphatidylinositol 3-kinase (PI3 kinase) mediates gastrulation cell migration in zebrafish via its regulation of PIP(2)/PIP(3) balance. Although PI3 kinase counter enzyme PTEN has also been reported to be essential for gastrulation, its role in zebrafish gastrulation has been controversial due to the lack of gastrulation defects in pten-null mutants. To clarify this issue, we knocked down a pten isoform, ptenb by using anti-sense morpholino oligos (MOs) in zebrafish embryos and found that ptenb MOs inhibit convergent extension by affecting cell motility and protrusion during gastrulation. The ptenb MO-induced convergence defect could be rescued by a PI3-kinase inhibitor, LY294002 and by overexpressing dominant negative Cdc42. Overexpression of human constitutively active akt1 showed similar convergent extension defects in zebrafish embryos. We also observed a clear enhancement of actin polymerization in ptenb morphants under cofocal microscopy and in actin polymerization assay. These results suggest that Ptenb by antagonizing PI3 kinase and its downstream Akt1 and Cdc42 to regulate actin polymerization that is critical for proper cell motility and migration control during gastrulation in zebrafish.  相似文献   

11.
Zebrafish gastrulation movements: bridging cell and developmental biology   总被引:1,自引:0,他引:1  
During vertebrate gastrulation, large cellular rearrangements lead to the formation of the three germ layers, ectoderm, mesoderm and endoderm. Zebrafish offer many genetic and experimental advantages for studying vertebrate gastrulation movements. For instance, several mutants, including silberblick, knypek and trilobite, exhibit defects in morphogenesis during gastrulation. The identification of the genes mutated in these lines together with the analysis of the mutant phenotypes has provided new insights into the molecular and cellular mechanisms that underlie vertebrate gastrulation movements.  相似文献   

12.
Mainly because of its transparency, the Fundulus gastrula constitutes ideal material for direct study of morphogenetic cell movements in vivo. Marking studies show that deep cells of the germ ring converge toward and enter the embryonic shield, where they undergo extension. Those close to the shield move faster. Analysis of videotapes reveals that all deep cells of the dorsal germ ring move toward the shield. But none moves in a direct line. All meander considerably. Germ ring cells nearer the shield move toward it at a higher net rate than those farther away because they meander less. This suggests that exogenous factors promote their directionality. Cells in the prospective yolk sac adjacent to the germ ring also show net convergence, but they meander more. Directional forces are apparently stronger in the germ ring. Converging deep cells move both by filolamellipodia and, less frequently, by blebs. However, there is very little individual cell movement; all cells are almost always in adhesive contact with other cells in moving cell clusters. Clusters vary constantly in size, continually aggregating with other cells and other clusters and splitting. Filolamellipodial cells show contact inhibition of cell movement. Nevertheless, they move and do so directionally, presumably in part because, as members of cell clusters, much of their movement is passive. They also show intercalation or invasive activity, but, consistent with their contact-inhibiting properties, only when neighboring cells separate and provide free space. Cells moving by blebbing locomotion are non-contact inhibiting and intercalate readily. Cell division continues during convergence. Although this temporarily arrests their movement, the daughter cells soon join in the mass convergent movement.  相似文献   

13.
Lai SL  Chan TH  Lin MJ  Huang WP  Lou SW  Lee SJ 《PloS one》2008,3(10):e3439
Intensive cellular movements occur during gastrulation. These cellular movements rely heavily on dynamic actin assembly. Rho with its associated proteins, including the Rho-activated formin, Diaphanous, are key regulators of actin assembly in cellular protrusion and migration. However, the function of Diaphanous in gastrulation cell movements remains unclear. To study the role of Diaphanous in gastrulation, we isolated a partial zebrafish diaphanous-related formin 2 (zdia2) clone with its N-terminal regulatory domains. The GTPase binding domain of zDia2 is highly conserved compared to its mammalian homologues. Using a yeast two-hybrid assay, we showed that zDia2 interacts with constitutively-active RhoA and Cdc42. The zdia2 mRNAs were ubiquitously expressed during early embryonic development in zebrafish as determined by RT-PCR and whole-mount in situ hybridization analyses. Knockdown of zdia2 by antisense morpholino oligonucleotides (MOs) blocked epiboly formation and convergent extension in a dose-dependent manner, whereas ectopic expression of a human mdia gene partially rescued these defects. Time-lapse recording further showed that bleb-like cellular processes of blastoderm marginal deep marginal cells and pseudopod-/filopod-like processes of prechordal plate cells and lateral cells were abolished in the zdia2 morphants. Furthermore, zDia2 acts cell-autonomously since transplanted zdia2-knockdown cells exhibited low protrusive activity with aberrant migration in wild type host embryos. Lastly, co-injection of antisense MOs of zdia2 and zebrafish profilin I (zpfn 1), but not zebrafish profilin II, resulted in a synergistic inhibition of gastrulation cell movements. These results suggest that zDia2 in conjunction with zPfn 1 are required for gastrulation cell movements in zebrafish.  相似文献   

14.
During Xenopus development, embryonic cells dramatically change their shape and position. Rho family small GTPases, such as RhoA, Rac, and Cdc42, play important roles in this process. These GTPases are generally activated by guanine nucleotide exchange factors (GEFs); however, the roles of RhoGEFs in Xenopus development have not yet been elucidated. We therefore searched for RhoGEF genes in our Xenopus EST database, and we identified several genes expressed during embryogenesis. Among them, we focused on one gene, designated xNET1. It is similar to mammalian NET1, a RhoA-specific GEF. An in vitro binding assay revealed that xNET1 bound to RhoA, but not to Rac or Cdc42. In addition, transient expression of xNET1 activated endogenous RhoA. These results indicated that xNET1 is a GEF for RhoA. Epitope-tagged xNET1 was localized mainly to the nucleus, and the localization was regulated by nuclear localization signals in the N-terminal region of xNET1. Overexpression of either wild-type or a mutant form of xNET1 severely inhibited gastrulation movements. We demonstrated that xNET1 was co-immunoprecipitated with the Dishevelled protein, which is an essential signaling component in the non-canonical Wnt pathway. This pathway has been shown to activate RhoA and regulate gastrulation movements. We propose that xNET1 or a similar RhoGEF may mediate Dishevelled signaling to RhoA in the Wnt pathway.  相似文献   

15.
Lin CW  Yen ST  Chang HT  Chen SJ  Lai SL  Liu YC  Chan TH  Liao WL  Lee SJ 《PloS one》2010,5(12):e15331
During gastrulation, cohesive migration drives associated cell layers to the completion of epiboly in zebrafish. The association of different layers relies on E-cadherin based cellular junctions, whose stability can be affected by actin turnover. Here, we examined the effect of malfunctioning actin turnover on the epibolic movement by knocking down an actin depolymerizing factor, cofilin 1, using antisense morpholino oligos (MO). Knockdown of cfl1 interfered with epibolic movement of deep cell layer (DEL) but not in the enveloping layer (EVL) and the defect could be specifically rescued by overexpression of cfl1. It appeared that the uncoordinated movements of DEL and EVL were regulated by the differential expression of cfl1 in the DEL, but not EVL as shown by in situ hybridization. The dissociation of DEL and EVL was further evident by the loss of adhesion between layers by using transmission electronic and confocal microscopy analyses. cfl1 morphants also exhibited abnormal convergent extension, cellular migration and actin filaments, but not involution of hypoblast. The cfl1 MO-induced cell migration defect was found to be cell-autonomous in cell transplantation assays. These results suggest that proper actin turnover mediated by Cfl1 is essential for adhesion between DEL and EVL and cell movements during gastrulation in zebrafish.  相似文献   

16.
During frog gastrulation, mesendodermal cells become apposed to the blastocoel roof (BCR) by endoderm rotation, and migrate towards the animal pole. The leading edge of the mesendodermal cells (LEM) contributes to the directional migration of involuting marginal zone (IMZ) cells, but the molecular mechanism of this process is not well understood. Here we show that CXCR4/SDF-1 signaling mediates the directional movement of the LEM in Xenopus embryos. Expression of xCXCR4 was detected in the IMZ, and was complemented by xSDF-1alpha expression in the inner surface of the BCR. Over-expression of xCXCR4 and xSDF-1alpha caused gastrulation defects. An xCXCR4 N-terminus deletion construct and xSDF-1alpha-MO also inhibited gastrulation. Furthermore, explants of LEM migrate towards the dorsal BCR in the presence of xSDF-1alpha, and altered xCXCR4 expression in the LEM inhibited LEM migration. These results suggest that CXCR4/SDF-1 signaling is necessary for the migrations of massive numbers of cells during gastrulation.  相似文献   

17.
Mesodermal cell migration during Xenopus gastrulation   总被引:3,自引:0,他引:3  
The adhesive glycoprotein fibronectin (FN), which is a component of the network of extracellular matrix fibrils on the inner surface of the blastocoel roof (BCR), has been proposed to play a major role in directing mesodermal cell migration during amphibian gastrulation. In the first part of this paper, the adhesion of Xenopus mesodermal cells to FN in vitro is examined. Cells from several mesoderm regions, which differ in developmental fate and morphogenetic activity, are able to bind specifically to the RGD cell-binding site of FN. Dorsal mesodermal cell adhesion to FN varies along the anterior-posterior (a-p) axis: adhesion is strongest in the anterior head mesoderm, and gradually decreases posteriorly. This a-p gradient of mesodermal adhesiveness to FN does not change during mesodermal involution, and is reflected in the morphology of mesodermal explants on FN. An a-p strip of mesoderm develops a spreading, leading anterior margin and a compact, retracting posterior end, thus moving slowly and directionally over the FN substrate at about 0.8 micron/min. Although dissociated cells from all levels of the dorsal mesodermal axis adhere to FN, only the anterior, leading prospective head mesoderm cells migrate as single cells on a FN substrate in vitro. Locomotion by means of lamelliform protrusions occurs at an average rate of about 1.5 micron/min. Cells of the more posterior axial mesoderm merely shift position at random without substantial net translocation, and preinvolution mesoderm cells are completely stationary. On the BCR, the in vivo substrate for mesodermal cell migration, dissociated prospective head mesoderm cells spread and migrate as on FN in vitro, at 2.2 microns/min. In the presence of an RGD peptide which inhibits cell-FN interaction, cells remain globular and do not spread. They are still motile, but change direction frequently, which leads to less efficient net translocation. Apparently, interaction with the RGD cell-binding site of FN and concomitant spreading of head mesoderm cells is required for the stabilization of cell locomotion. In contrast to the directional migration of the mesoderm cell population toward the animal pole in the embryo, the pathways of dissociated cells on the BCR are randomly oriented. Coherent explants of migratory mesoderm do not move at all on the BCR, although they translocate on FN in vitro.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
During vertebrate gastrulation, both concurrent inductive events and cell movements are required for axis formation. Convergence and extension (CE) movements contribute to narrowing and lengthening the forming embryonic axis. MicroRNAs (miRNAs) play a critical role in regulating fundamental cellular functions and developmental processes, but their functions in CE movements are not well known. Zebrafish mir206 is maternally expressed and present throughout blastulation and gastrulation periods. Either gain or loss of function of mir206 leads to severe defects of convergent extension movements both cell autonomously and non-cell autonomously. Mosaic lineage tracing studies reveal that the formation of membrane protrusions and actin filaments is disturbed in mir206-overexpressing embryos or mir206 morphants. Mechanistically, mir206 targets prickle1a (pk1a) mRNA and as a result regulates c-Jun N-terminal protein kinase 2 (JNK2) phosphorylation. pk1a overexpression or knockdown can rescue convergent extension defects induced by mir206 overexpression or knockdown, respectively. Therefore, mir206 is an essential, novel regulator for normal convergent and extension movements by regulating mitogen-activated protein kinase (MAPK) JNK signaling.  相似文献   

19.
Myristoylated alanine-rich C kinase substrate (MARCKS) is an actin-binding, membrane-associated protein expressed during Xenopus embryogenesis. We analyzed its function in cytoskeletal regulation during gastrulation. Here, we show that blockade of its function impaired morphogenetic movements, including convergent extension. MARCKS was required for control of cell morphology, motility, adhesion, protrusive activity, and cortical actin formation in embryonic cells. We also demonstrate that the noncanonical Wnt pathway promotes the formation of lamellipodia- and filopodia-like protrusions and that MARCKS is necessary for this activity. These findings show that MARCKS regulates the cortical actin formation that is requisite for dynamic morphogenetic movements.  相似文献   

20.
Shindo A  Yamamoto TS  Ueno N 《PloS one》2008,3(2):e1600
Cell polarity is an essential feature of animal cells contributing to morphogenesis. During Xenopus gastrulation, it is known that chordamesoderm cells are polarized and intercalate each other allowing anterior-posterior elongation of the embryo proper by convergent extension (CE). Although it is well known that the cellular protrusions at both ends of polarized cells exert tractive force for intercalation and that PCP pathway is known to be essential for the cell polarity, little is known about what triggers the cell polarization and what the polarization causes to control intracellular events enabling the intercalation that leads to the CE. In our research, we used EB3 (end-binding 3), a member of +TIPs that bind to the plus end of microtubule (MT), to visualize the intracellular polarity of chordamesoderm cells during CE to investigate the trigger of the establishment of cell polarity. We found that EB3 movement is polarized in chordamesoderm cells and that the notochord-somite tissue boundary plays an essential role in generating the cell polarity. This polarity was generated before the change of cell morphology and the polarized movement of EB3 in chordamesoderm cells was also observed near the boundary between the chordamesoderm tissue and na?ve ectoderm tissue or lateral mesoderm tissues induced by a low concentration of nodal mRNA. These suggest that definitive tissue separation established by the distinct levels of nodal signaling is essential for the chordamesodermal cells to acquire mediolateral cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号