首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effects of teichoic acids on the Mg(2+)-requirement of some membrane-bound enzymes in cell preparations from Bacillus licheniformis A.T.C.C. 9945 were examined. 2. The biosynthesis of the wall polymers poly(glycerol phosphate glucose) and poly(glycerol phosphate) by membrane-bound enzymes is strongly dependent on Mg(2+), showing maximum activity at 10-15mm-Mg(2+). 3. When the membrane is in close contact with the cell wall and membrane teichoic acid, the enzyme systems are insensitive to added Mg(2+). The membrane appears to interact preferentially with the constant concentration of Mg(2+) that is bound to the phosphate groups of teichoic acid in the wall and on the membrane. When the wall is removed by the action of lysozyme the enzymes again become dependent on an external supply of Mg(2+). 4. A membrane preparation that retained its membrane teichoic acid was still dependent on Mg(2+) in solution, but the dependence was damped so that the enzymes exhibited near-maximal activity over a much greater range of concentrations of added Mg(2+); this preparation contained Mg(2+) bound to the membrane teichoic acid. The behaviour of this preparation could be reproduced by binding membrane teichoic acid to membranes in the presence of Mg(2+). Addition of membrane teichoic acid to reaction mixtures also had a damping effect on the Mg(2+) requirement of the enzymes, since the added polymer interacted rapidly with the membrane. 5. Other phosphate polymers behaved in a qualitatively similar way to membrane teichoic acid on addition to reaction mixtures. 6. It is concluded that in whole cells the ordered array of anionic wall and membrane teichoic acids provides a constant reservoir of bound bivalent cations with which the membrane preferentially interacts. The membrane teichoic acid is the component of the system which mediates the interaction of bound cations with the membrane. The anionic polymers in the wall scavenge cations from the medium and maintain a constant environment for the membrane teichoic acid. Thus a function of wall and membrane teichoic acids is to maintain the correct ionic environment for cation-dependent membrane systems.  相似文献   

2.
An auxotroph of Bacillus subtilis 168 unable to synthesize D-alanine loses the ability to support endogenously energized transport when deprived of D-alanine. Revertants of the mutant retain transport activity. The loss of transport is specific for substrates taken up by active transport; substrates taken up by group translocation are transported at normal rates. The loss of transport can be retarded by pretreatment of the cells with inhibitors of protein synthesis. Since the loss of transport could be due to an alteration in a D-alanine-containing polymer, we investigated the incorporation of D-[14C]alanine into macromolecules. The major D-alanine-containing polymers in B. subtilis are peptidoglycan and teichoic acid, with 4 to 6% of the D-[14C]alanine label found in trypsin-soluble material. Whereas the peptidoglycan and teichoic acid undergo turnover, the trypsin-soluble material does not. Treatment of the trypsin-soluble material with Pronase releases free D-alanine. Analysis of acid-hydrolyzed trypsin-soluble material indicated that approximately 75% of the radioactivity is present as D-alanine, with the remainder present as L-alanine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partially purified D-[14C]alanine-labeled membranes indicated the presence of two peaks of radioactivity (molecular weights, 230,000 and 80,000) that could be digested by trypsin. The results suggest that D-alanine may be covalently bound to cellular proteins.  相似文献   

3.
Positively charged antimicrobial peptides with membrane-damaging activity are produced by animals and humans as components of their innate immunity against bacterial infections and also by many bacteria to inhibit competing microorganisms. Staphylococcus aureus and Staphylococcus xylosus, which tolerate high concentrations of several antimicrobial peptides, were mutagenized to identify genes responsible for this insensitivity. Several mutants with increased sensitivity were obtained, which exhibited an altered structure of teichoic acids, major components of the Gram-positive cell wall. The mutant teichoic acids lacked D-alanine, as a result of which the cells carried an increased negative surface charge. The mutant cells bound fewer anionic, but more positively charged proteins. They were sensitive to human defensin HNP1-3, animal-derived protegrins, tachyplesins, and magainin II, and to the bacteria-derived peptides gallidermin and nisin. The mutated genes shared sequence similarity with the dlt genes involved in the transfer of D-alanine into teichoic acids from other Gram-positive bacteria. Wild-type strains bearing additional copies of the dlt operon produced teichoic acids with higher amounts of D-alanine esters, bound cationic proteins less effectively and were less sensitive to antimicrobial peptides. We propose a role of the D-alanine-esterified teichoic acids which occur in many pathogenic bacteria in the protection against human and animal defense systems.  相似文献   

4.
The interaction of magnesium ions with teichoic acid.   总被引:16,自引:0,他引:16       下载免费PDF全文
The binding of Mg2+ to the wall teichoic acid of Lactobacillus buchneri N.C.I.B. 8007 was measured by equilibrium dialysis at controlled ionic concentration and pH. In an aqueous solution containing 10mM-NaCl at pH 5.0 one Mg2+ ion was bound for every two phosphate groups of the teichoic acid, with an apparent association constant, Kassoc. = 2.7 x 10(3) M-1. On lowering the pH below the pKa of the phosphate groups the amount of bound Mg2+ decreased concomitantly with decreasing ionization of the phosphate groups. Both the amount of Mg2+ bound to the teichoic acid and the apparent association constants were similar in the presence of 10 mM concentrations of NaCl or KCl but decreased markedly in the presence of 10 mM-CaCl2 because of competition between Ca2+ and Mg2+ for the binding sites. A similar effect was found when the concentration of NaCl was increased from 0 to 50 mM. The results are discussed in relation to the function of teichoic acid in the walls of Gram-positive bacteria.  相似文献   

5.
1. Mg(2+)-limited Bacillus subtilis var. niger, growing in a chemostat in a simple salts medium, contained considerably more potassium and phosphorus than Mg(2+)-limited Aerobacter aerogenes growing in a similar medium at corresponding dilution rates. 2. Growth of the bacillus in a K(+)-limited environment did not lower the cellular potassium and phosphorus contents, the molar proportions of cell-bound magnesium, potassium, RNA (as nucleotide) and phosphorus being approximately constant at 1:13:5:13 (compared with 1:4:5:8 in Mg(2+)-limited or K(+)-limited A. aerogenes). 3. Growth of B. subtilis in a phosphate-limited environment caused the cellular phosphorus content to be lowered to a value similar to that of Mg(2+)-limited A. aerogenes, but the potassium content was not correspondingly lowered; the molar potassium:magnesium ratio varied from 14 to 17 with changes in dilution rate from 0.4 to 0.1hr.(-1). 4. Whereas over 70% of the cell-bound phosphorus of Mg(2+)-limited or K(+)-limited A. aerogenes was contained in the nucleic acids, these polymers accounted for less than 50% of the phosphorus present in similarly limited B. subtilis; much phosphorus was present in the walls of the bacilli, bound in a teichoic acid-type compound composed of glycerol phosphate and glucose (but no alanine). 5. Phosphate-limited B. subtilis cell walls (from organisms grown at a dilution rate of 0.2hr.(-1)) contained little phosphorus and no detectable amounts of teichoic acid, but 40% of the cell-wall dry weight could be accounted for by a teichuronic acid-type compound; this contained a glucuronic acid and galactosamine, neither of which could be detected in the walls of Mg(2+)-limited B. subtilis grown at a corresponding rate. 6. It is suggested that the high concentration of potassium in growing B. subtilis (compared with A. aerogenes) results from the presence of large amounts of anionic polymer (teichoic acid or teichuronic acid) in the bacillus cell walls.  相似文献   

6.
When grown in a chemostat under various nutritional conditions, cells of Bacillus subtilis W23 produce walls containing teichoic acid or teichuronic acid. The binding of Mg2+ to these walls and to the isolated anionic polymers in solution was measured by equilibrium dialysis. In solution the ribitol teichoic acid bound Mg2+ in the molar ratio Mg2+/P=1:1 with an apparent association constant (Kassoc.) of 0.61 X 10(3)M-1, and the teichuronic acid bound Mg2+ in the ratio Mg2+/CO2-=1.1, Kassoc.=0.3 X 10(3)M-1. Cell walls containing teichuronic acid exhibited closely similar binding properties to those containing teichoic acid; in both cases Mg2+ was bound in the ratio Mg/P or Mg/CO2- of 0.5:1 and with a greater affinity than displayed by the isolated polymers in solution. It was concluded that Mg2+ ions are bound bivalently between anionic centres in the walls and that the incorporation of teichoic acid or teichuronic acid into the walls gives rise to similar ion-binding and charged properties. The results are discussed in relation to the possible functions of anionic polymers in cell walls.  相似文献   

7.
The binding of Mg2+ to the ribitol teichoic acid of Staphylococcus aureus H walls was examined by equilibrium dialysis in solution and in the intact wall; the influence of alanyl ester groups on binding was determined. In solution the ribitol polymer had a lower affinity than did a glycerol teichoic acid and bound Mg2+ in the ratio Mg2+/P of 1:1. The presence of alanyl ester residues caused a decrease in the amount of cations bound in stoicheiometric proportion to the ratio Ala/P, but the affinity constant was unaltered. It is concluded that in solution the ribitol teichoic acid binds Mg2+ univalently to phosphate groups and univalently to a counter-ion. In the intact wall the binding of Mg2+ was different. The affinity constant was higher and resembled that of a glycerol teichoic acid. It is concluded that Mg2+ forms bridges across phosphate groups in teichoic acid chains lying adjacent to each other in the wall. The effect of alanyl esters was similar to that in solution, but Scatchard plots were not linear at low concentrations of Mg2+ where it was shown that the difference in affinities between walls with and without alanyl ester residues was much greater than it was at higher concentrations of Mg2+. Thus at very low concentrations of Mg2+ effective binding to the wall is markedly improved by loss of alanyl ester residues.  相似文献   

8.
The binding of the aminoglycoside antibiotic dihydrostreptomycin to defined cell-wall teichoic acids and to lipoteichoic acid isolated from various gram-positive eubacteria was followed by equilibrium dialysis. Dihydrostreptomycin was used at a wide range of concentration under different conditions of ionic strength, concentration of teichoic acid, presence of cationic molecules like Mg2+, spermidine, other aminoglycoside antibiotics (gentamicin, neomycin, paromomycin). Interaction of dihydrostreptomycin with teichoic acid was found to be a cooperative binding process. The binding characteristics seem to be dependent on structural features of teichoic acid and are influenced by cationic molecules. Mg2+, spermidine and other aminoglycosides antibiotics inhibit the binding of dihydrostreptomycin to teichoic acid competitively. The binding of aminoglycosides to teichoic acids is considered as a model system for the interaction of aminoglycoside antibiotics with cellular polyanions. Conclusions of physiological significance are drawn.  相似文献   

9.
Bacillus subtilis 168 was grown in chemostat culture in fully defined media containing a constant concentration of magnesium and concentrations of phosphate that varied from those giving phosphate-limited growth to those in which phosphate was present in excess and magnesium was limiting. Phosphate-limited bacteria were deficient in wall teichoic acid and contained less than half as much cellular phosphate as did bacteria grown in excess of phosphate. Approximately 70% of the additional phosphate in the latter bacteria was present as wall teichoic acid, indicating that the ability of the bacteria to discontinue teichoic acid synthesis when grown under phosphate limitation permits a substantial increase in their growth yield. Since not all of the additional phosphate is present as wall teichoic acid other cellular phosphates may also be present in reduced amounts in the phosphate-limited bacteria. The content of phosphate groups in walls of magnesium-limited bacteria was similar to the content of uronic acid groups in walls of phosphate-limited bacteria, and walls of bacteria grown in media of intermediate composition contained intermediate proportions of the two anionic polymers. Phage SP50, used as a marker for the presence of teichoic acid, bound densely to nearly all of the bacteria in samples containing down to 22% of the maximum content of teichoic acid. Apparently, therefore, nearly all of these bacteria contain teichoic acid, and the population does not consist of a mixture of individuals having exclusively one kind of anionic polymer. Bacteria containing less than 22% of the maximum content of teichoic bound in a nonuniform manner, and possible explanations for this are discussed.  相似文献   

10.
A glucosyltransferase, extracted from the membranes of Bacillus cereus AHU 1030 with Tris-HCl buffer containing 0.1% Triton X-100 at pH 9.5, was separated from an endogenous glucosyl acceptor by chromatography on DEAE-Sepharose CL-6B subsequent to chromatography on Sepharose 6B. Structural analysis data showed that the glucosyl acceptor was a glycerol phosphate polymer linked to beta-gentiobiosyl diglyceride. The enzyme catalyzed the transfer of glucosyl residues from UDP-glucose to C-2 of the glycerol residues of repeating units of the acceptor. On the other hand, a lipoteichoic acid which contained 0.3 D-alanine residue per phosphorus was isolated from the cells by phenol treatment at pH 4.6. Except for the presence of D-alanine, this lipoteichoic acid had the same structure as the glucosyl acceptor. The rate of glucosylation observed with the D-alanine-containing lipoteichoic acid as the substrate was less than 40% of that observed with the D-alanine-free lipoteichoic acid, indicating that the ester-linked D-alanine in the lipoteichoic acid interferes with the action of the glucosyltransferase. The enzyme also catalyzed glucosylation of poly(glycerol phosphate) which was synthesized in the reaction of a separate enzyme fraction with CDP-glycerol. Thus, it is likely that the glucosyltransferase functions in the synthesis of cell wall teichoic acid.  相似文献   

11.
The cell wall of lactic acid bacteria has the typical Gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attribut es of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids.  相似文献   

12.
The morphology and cell wall composition of Bacillus coagulans, a facultative thermophile, were examined as a function of growth temperature. The morphology of the organism varied when it was grown at different temperatures; at 37 C the organism grew as individual cells which increased in length with increasing growth temperature. At 55 C it grew in long chains of cells. Cell wall prepared from cells grown at 37 C contained 44% teichoic acid by weight, whereas cells grown at 55 C contained 29% teichoic acid. Teichoic acid from these cells was a polymer of glycerol phosphate containing galactose and ester alanine. The ratio of ester alanine to phosphate was significantly higher in cell walls and teichoic acid from 37 C-grown cells compared with those from 55 C-grown cells. Other differences observed were that cells grown at 55 C contained a lower level of autolytic ability, produced cell walls which bound more Mg(2+), and contained less peptide cross-bridging in its peptidoglycan layer than cells grown at 37 C.  相似文献   

13.
The increasing prevalence of sepsis from Gram-positive bacterial pathogens necessitates further evaluation of the basic assumptions about the molecular pathogenesis of septic shock. Since diverse physiological functions of Gram-positive bacteria are controlled by the degree of esterification of teichoic acids with D-alanine, we examined the reactivity of monosaccharide esters in which anomerically free or protected D-glucose is linked through its C-6 hydroxy group to either phenylalanyl or tyrosyl residues as models for teichoic acid fragment. We show that the attached sugar moiety induces activation of the amino acid residue. Due to the enhanced reactivity of the NH2 group in the monosaccharide esters studied, the formation of products generated by intramolecular and intermolecular glycation reactions is accelerated resulting in heterogeneous mixture of compounds. These findings suggest that, if similar adducts are formed by glycation of D-alanine in teichoic acid of Gram-positive bacteria, they should be examined as potential bioactive ligands or chemical message for infection.  相似文献   

14.
Twist states of Bacillus subtilis macrofibers were found to vary as a function of the concentration of D-alanine in the medium during growth. L-Alanine in the same concentration range had no effect. Increasing concentrations of D-alanine resulted in structures progressively more right-handed (or less left-handed). All strains examined in this study, including mutants fixed in the left-hand domain as a function of temperature, responded to D-alanine in the same way. All twist states from tight left- to tight right-handedness could be achieved solely by varying the D-alanine concentration. The D-alanine-requiring macrofiber strain 2C8, which carries a genetic defect (dal-1) in the alanine racemase, behaved in a similar fashion. The combined effects of D-alanine and ammonium sulfate (a factor known to influence macrofiber twist development in the leftward direction) were examined by using both strains able to undergo temperature-induced helix hand inversion and others incapable of doing so. In all cases, the effects of D-alanine predominated. A synergism was found in which increasing the concentration of ammonium sulfate in the presence of D-alanine enhanced the right-factor activity of the latter. A D-alanine pulse protocol provided evidence that structures undergo a transient inversion indicative of "memory." Chloramphenicol treatment inhibited the establishment of memory in the D-alanine-induced right to left inversion, supporting the existence of a "left twist protein(s)" that is required for the attainment of left-handed twist states. Chemical analysis of cell walls obtained from right- and left-handed macrofibers produced in the presence and absence of D-alanine, respectively, failed to reveal twist state-specific differences in the overall composition of either peptidoglycan or wall teichoic acids.  相似文献   

15.
A cell wall component that bound to HeLa cells (HeLa cell-binding CWC) was isolated from a clinical isolate of Staphylococcus aureus. The HeLa cell-binding CWC was resistant to heat (100 C, 1 hr) and proteases, did not stain with Coomassie Brilliant Blue R-250 on SDS-PAGE but stained as a broad band with antiserum against the strain on Western blots. These data suggest that the HeLa cell-binding CWC is not a protein, and may be teichoic acid. Purified teichoic acid bound to HeLa cells, whereas fractions without teichoic acid did not. In Western blots, HeLa cell-binding CWC appeared as a broad band of less than 35 kDa, similar to that of purified teichoic acid. These data suggest that the HeLa cell-binding CWC obtained in this study is teichoic acid. Teichoic acid inhibited S. aureus adherence to HeLa cells and bound to the cells time and dose dependently, in a saturable and reversible manner, and therefore appears to be an adhesin of S. aureus to HeLa cells.  相似文献   

16.
Although exponential growth of Bacillus subtilis 168 in a phosphate-limited medium halted with the exhaustion of inorganic phosphate, the bacteria continued to grow at a slower rate for a further 3 to 4 h at 37 degrees C. This postexponential growth in the absence of an exogenous phosphate supply was accompanied by a loss of teichoic acid from the cell walls of the bacteria. Quantitative analysis of walls and culture fluids showed that the phosphate loss from the walls could not be accounted for by an increase in phosphate-containing compounds in the medium, which implied that the cells were using their own wall teichoic acids to supply phosphate necessary for growth. Addition of exogenous teichoic acid to phosphate-starved cultures resulted in stimulation of growth and in the simultaneous disappearance of teichoic acid phosphate from the medium. It is proposed that teichoic acids, which can contain more than 30% of the total phosphorus of exponential-phase cells, can be used as a reserve phosphate source when the bacteria are starved for inorganic phosphate.  相似文献   

17.
A 2 x 2 design was employed to examine the effect of cellular growth state and medium serum concentration on potential indices of n - 6 polyunsaturated fatty acid (PUFA) status in human skin fibroblasts. The cells were cultured either as nonmultiplying cell monolayers or as medium-density, log-phase multiplying cells. An interaction of cellular growth state and medium serum concentration influenced the accumulation of 20:3(n - 9), but not 22:3(n - 9), in the cellular phospholipids. The 20:3(n - 9)/20:4(n - 6) ratio was the most sensitive index of n - 6 PUFA status; however, the ratio was significantly affected by cellular growth state. The 22:3(n - 9)/22:4(n - 6) ratio appears to be an index of n - 6 PUFA status in fibroblasts that is not significantly affected by the growth state of cells.  相似文献   

18.
Polyelectrolyte Nature of Bacterial Teichoic Acids   总被引:11,自引:8,他引:3       下载免费PDF全文
Several physicochemical properties of the teichoic acid of Bacillus subtilis 168 have been determined. The teichoic acid partial specific volume was found to be 0.57 ml/g. The apparent weight-average molecular weight of the polymer was 24,800. Sedimentation was strongly dependent on solvent. The sedimentation coefficient of the teichoic acid was found to have a value of s(20.w) (0) = 1.90S. In dilute buffers and distilled water, the teichoic acid possessed a rigid rod or extended conformation. Salts induced a loss of secondary structure in the polymer, resulting in a random coil configuration. Salt-induced structural changes in the teichoic acid were determined by viscosities, ultraviolet difference spectra, and inhibition of precipitation with concanavalin A. Divalent cations such as Mg(2+) had little effect on the teichoic acid structure. The salt-induced structural changes were reversible, as evidenced by return of the original properties upon dialysis of the teichoic acid against water. Sodium chloride inhibited the adsorption of bacteriophage ?25 to B. subtilis cell walls. Teichoic acid conformation may have a significant influence on the physiology of bacteria.  相似文献   

19.
When purified D-amino acid dehydrogenase [Olsiewski, P. J., Kaczorowski, G. J., & Walsh, C. T. (1980) J. Biol. Chem. 255, 4487] is incubated with right-side-out membrane vesicles from Escherichia coli, the enzyme binds to the membrane in a time- and concentration-dependent manner. As a result, the vesicles acquire the ability to oxidize D-alanine and catalyze D-alanine-dependent active transport. Similarly, incubation of D-amino acid dehydrogenase with inside-out vesicles results in binding of enzyme and D-alanine oxidase activity. Antibody inhibition studies indicate that the enzyme is bound exclusively to the inner cytoplasmic surface of the membrane in native vesicles (i.e., membrane vesicles prepared from cells induced for D-amino acid dehydrogenase). In contrast, similar studies with reconstituted vesicles demonstrate that enzyme binds to the surface exposed to the medium regardless of the orientation of the membrane. Thus, enzyme bound to right-side-out vesicles is located on the opposite side of the membrane from where it is normally found. Remarkably, in the presence of D-alanine, reconstituted right-side-out and inside-out vesicles generate electrochemical proton gradients of similar magnitude but opposite polarity, indicating that enzyme bound to either surface of the membrane is physiologically functional. The results suggest that vectorial proton translocation via the respiratory chain occurs at a point distal to the site where electrons enter the respiratory chain from the primary dehydrogenase, a conclusion that is inconsistent with the notion that the dehydrogenase forms part of a proton-translocating loop.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号