首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Neutrophils store large quantities of neutrophil serine proteases (NSPs) that contribute, via multiple mechanisms, to antibacterial immune defences. Even though neutrophils are indispensable in fighting Staphylococcus aureus infections, the importance of NSPs in anti‐staphylococcal defence is yet unknown. However, the fact that S. aureus produces three highly specific inhibitors for NSPs [the extracellular adherence proteins (EAPs) Eap, EapH1 and EapH2], suggests that these proteases are important for host defences against this bacterium. In this study we demonstrate that NSPs can inactivate secreted virulence factors of S. aureus and that EAP proteins function to prevent this degradation. Specifically, we find that a large group of S. aureus immune‐evasion proteins is vulnerable to proteolytic inactivation by NSPs. In most cases, NSP cleavage leads to functional inactivation of virulence proteins. Interestingly, proteins with similar immune‐escape functions appeared to have differential cleavage sensitivity towards NSPs. Using targeted mutagenesis and complementation analyses in S. aureus, we demonstrate that all EAP proteins can protect other virulence factors from NSP degradation in complex bacterial supernatants. These findings show that NSPs inactivate S. aureus virulence factors. Moreover, the protection by EAP proteins can explain why this antibacterial function of NSPs was masked in previous studies. Furthermore, our results indicate that therapeutic inactivation of EAP proteins can help to restore the natural host immune defences against S. aureus.  相似文献   

2.
Staphylococcus aureus is responsible for significant and increasing number of hospital-and community-acquired infections worldwide. A pool of pathogenesis factors helps the bacterium to cause the range of mild to severe infections leading the high mortality and morbidity. Staphylococcus aureus and Candida albicans can be co-isolated from all human mucosal sites and are responsible for diverse infections. Vaccine design for related polymicrobial infections should consider the consortia of microorganisms responsible for the disease. In this study we considered biofilm mode of growth and polymicrobial nature of the infections caused by S. aureus. In the first phase of study the prediction of putative antigenic targets of S. aureus and C. albicans was conducted based on data mining and bioinformatic characterization of their proteins. Various properties of proteins were evaluated such as subcellular localization, hydrophilicity, repeat containing modules, beta turns, surface accessibility and number of antigenic determinants. The second phase includes various immunoinformatics analyses on six proteins include ALS, ClfA, FtmB, SdrE, Spa and Bap leading to design a novel sub-unit hexavalent vaccine. Several potential T cell and B-cell epitopes are present in our vaccine. Also the vaccine is expected to strongly induce IFN-gamma production. The amino acid sequence introduced here is expected to enhance cell-mediated and humoral responses against S. aureus biofilm-related infections to clear biofilm communities of S. aureus and intracellular colonies of pathogen as well as planktonic cells and thus reduces colonization and persistence.  相似文献   

3.
Staphylococcus aureus is able to disseminate from vascular device biofilms to the blood and organs, resulting in life‐threatening infections such as endocarditis. The mechanisms behind spreading are largely unknown, especially how the bacterium escapes immune effectors and antibiotics in the process. Using an in vitro catheter infection model, we studied S. aureus biofilm growth, late‐stage dispersal, and reattachment to downstream endothelial cell layers. The ability of the released biofilm material to resist host response and disseminate in vivo was furthermore studied in whole blood and phagocyte survival assays and in a short‐term murine infection model. We found that S. aureus biofilms formed in flow of human plasma release biofilm thromboemboli with embedded bacteria and bacteria‐secreted polysaccharides. The emboli disseminate as antibiotic and immune resistant vehicles that hold the ability to adhere to and initiate colonisation of endothelial cell layers under flow. In vivo experiments showed that the released biofilm material reached the heart similarly as ordinary broth‐grown bacteria but also that clumps to some extend were trapped in the lungs. The clumping dispersal of S. aureus from in vivo‐like vascular biofilms and their specific properties demonstrated here help explain the pathophysiology associated with S. aureus bloodstream infections.  相似文献   

4.
Staphylococcus aureus has become a major source of hospital infections and the risk of colonisation and infection by community-acquired methicillin-resistant S. aureus (CA-MRSA) is increasingly higher. Because of the importance of S. aureus to public health, many molecular typing methods have been developed to determine its transmission routes and source of infection during epidemiological investigations. In this study we evaluated the usefulness of multiplex PCR based Multi-Locus VNTR Fingerprinting (MLVF) as the first step method for rapid differentiation of Croatian and Polish S. aureus isolates in hospital and community settings. This is a first report of the usefulness of MLVF in typing of hospital-acquired methicillin-sensitive S. aureus (HA-MSSA) and four CA-MRSA isolates. A total of 47 isolates of S. aureus recovered in Croatia in 2004 and in Poland in 2006 and 2007 were tested. The MLVF results were compared to those produced by other typing methods, such as Pulsed-Field Gel Electrophoresis (PFGE), Multi-Locus Sequence Typing (MLST) and spa typing. The MLVF analysis showed almost the same clonality results as the remaining typing methods although some differences were found. Epidemiological data about the relation among S. aureus isolates and the results produced by typing methods applied in the present study indicate that because of the advantages in ease and speed of Variable Number of Tandem Repeats (VNTR) procedure over PFGE, spa typing and MLST, MLVF can be used as a first screening method followed by additional typing.  相似文献   

5.
Bacteriolytic enzymes (cell lytic enzymes) are promising alternatives to antibiotics especially in killing drug-resistant bacteria. However, some bacteria slowly become resistant to various classes of peptidoglycan hydrolases, for reasons not well studied, in the presence of growth-supporting nutrients, which are prevalent at sites of infection. Here, we show that Staphylococcus aureus, a human and animal pathogen, while susceptible to the potent staphylolytic enzyme lysostaphin (Lst) in buffered saline, is highly resistant in the rich medium tryptic soy broth (TSB). Through a series of biochemical analysis, we identified that the resistance was due to prevention of Lst-cell binding mediated by the wall teichoic acids (WTAs) present on the cell surface. Inhibition or deletion of the gene tarO responsible for the first step of WTA biosynthesis greatly reduced S. aureus resistance to Lst in TSB. To overcome the resistance, we took advantage of the gene regulation potential of CRISPR-dCas9 and demonstrated that downregulation of tarO, tarH, and/or tarG gene expression, the latter two encoding enzymes that anchor WTAs in the outer layer of cell wall peptidoglycan, sensitized S. aureus to Lst and enabled eradication of the bacterium in TSB in 24 hr. As a result, we elucidate a key mechanism of Lst resistance in metabolically active S. aureus and provide a potential approach for treating life-threatening or hard-to-treat infections caused by Gram-positive pathogens.  相似文献   

6.
Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host–pathogen interactions in vivo, we used intravital two‐photon (2‐P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM‐EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone‐marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G‐protein‐coupled receptors on the PMN, whereas Interleukin‐1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2‐P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.  相似文献   

7.
[目的]从医院污水中分离金黄色葡萄球菌噬菌体,观察其形态,确证裂解谱特征并研究生物学和基因学特性,为噬菌体的临床应用奠定实验基础.[方法]将金黄色葡萄球菌ATCC25923作为宿主菌,采用双层琼脂平板法从医院污水中分离纯化噬菌体,电镜下观察形态并测定其最佳感染复数、一步生长曲线及裂解谱;全基因组测序并进行基因结构分析和...  相似文献   

8.
Autophagy, a catabolic pathway of lysosomal degradation, acts not only as an efficient recycle and survival mechanism during cellular stress, but also as an anti-infective machinery. The human pathogen Staphylococcus aureus (S. aureus) was originally considered solely as an extracellular bacterium, but is now recognized additionally to invade host cells, which might be crucial for persistence. However, the intracellular fate of S. aureus is incompletely understood. Here, we show for the first time induction of selective autophagy by S. aureus infection, its escape from autophagosomes and proliferation in the cytoplasm using live cell imaging. After invasion, S. aureus becomes ubiquitinated and recognized by receptor proteins such as SQSTM1/p62 leading to phagophore recruitment. Yet, S. aureus evades phagophores and prevents further degradation by a MAPK14/p38α MAP kinase-mediated blockade of autophagy. Our study demonstrates a novel bacterial strategy to block autophagy and secure survival inside the host cell.  相似文献   

9.
《Autophagy》2013,9(12):1865-1867
Staphylococcus aureus is an intracellular bacterium responsible for serious infectious processes. This pathogen escapes from the phagolysosomal pathway into the cytoplasm, a strategy that allows intracellular bacterial replication and survival with the consequent killing of the eukaryotic host cell and spreading of the infection. S. aureus is able to secrete several virulence factors such as enzymes and toxins. Our recent findings indicate that the main virulence factor of S. aureus, the pore-forming toxin α-hemolysin (Hla), is the secreted factor responsible for the activation of an alternative autophagic pathway. We have demonstrated that this noncanonical autophagic response is inhibited by artificially elevating the intracellular levels of cAMP. This effect is mediated by RAPGEF3/EPAC (Rap guanine nucleotide exchange factor (GEF)3/exchange protein activated by cAMP), a cAMP downstream effector that functions as a GEF for the small GTPase Rap. We have presented evidence that RAPGEF3 and RAP2B, through calpain activation, are the proteins involved in the regulation of Hla and S. aureus-induced autophagy. In addition, we have found that both, RAPGEF3 and RAP2B, are recruited to the S. aureus–containing phagosome. Of note, adding purified α-toxin or infecting the cells with S. aureus leads to a decrease in intracellular cAMP levels, which promotes autophagy induction, a response that favors pathogen intracellular survival, as previously demonstrated. We have identified some key signaling molecules involved in the autophagic response upon infection with a bacterial pathogen, which have important implications in understanding innate immune defense mechanisms.  相似文献   

10.
《Journal of molecular biology》2019,431(23):4699-4711
The human pathogen Staphylococcus aureus is a gram-positive bacterium that causes difficult-to-treat infections. One of the reasons why S. aureus is such as successful pathogen is due to the cell-to-cell physiological variability that exists within microbial communities. Many laboratories around the world study the genetic mechanisms involved in S. aureus cell heterogeneity to better understand infection mechanism of this bacterium. It was recently shown that the Agr quorum-sensing system, which antagonistically regulates biofilm-associated or acute bacteremia infections, is expressed in a subpopulation of specialized cells. In this review, we discuss the different genetic mechanism for bacterial cell differentiation and the physiological properties of the distinct cell types that are already described in S. aureus communities, as well as the role that these cell types play during an infection process.  相似文献   

11.
Staphylococcus aureus plays an important role in sepsis, pneumonia and wound infections. Here, we demonstrate that infection with several S. aureus strains results in apoptosis of human endothelial cells. S. aureus induced an activation of cellular caspases, the acid sphingomyelinase, a release of cytochrome c and a stimulation of Jun NH2-terminal kinase (JNK). The significance of these findings is indicated by a prevention of S. aureus triggered apoptosis of human cells deficient for ASM or upon genetic or pharmacological inhibition of JNK or caspases, respectively.  相似文献   

12.
The ywpF gene (SAV2097) of the Staphylococcus aureus strain Mu50 encodes the YwpF protein, which may play a role in antibiotic resistance. Here, we report the first crystal structure of the YwpF superfamily from S. aureus at 2.5‐Å resolution. The YwpF structure consists of two regions: an N‐terminal core β‐barrel domain that shows structural similarity to type VI secretion system (T6SS) proteins (e.g., Hcp1, Hcp3, and EvpC) and a C‐terminal two‐helix pair. Although the monomer structure of S. aureus YwpF resembles those of T6SS proteins, the dimer/tetramer model of S. aureus YwpF is distinct from the functionally important hexameric ring of T6SS proteins. We therefore suggest that the S. aureus YwpF may have a different function compared to T6SS proteins. Proteins 2015; 83:781–788. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus is the causal agent of bacterial wilt and ring rot of potato. So far, only two proteins have been shown to be essential for virulence, namely a plasmid-encoded cellulase CelA and a hypersensitive response-inducing protein. We have examined the relative expression of CelA and eight putative virulence factors during infection of potato and in liquid culture, using quantitative real-time PCR. The examined putative virulence genes were celB, a cellulase-encoding gene and genes encoding a pectate lyase, a xylanase and five homologues of the Clavibacter michiganensis subsp. michiganensis pathogenicity factor Pat-1 thought to encode a serine protease. Six of the nine assayed genes were up-regulated during infection of potato, including celA, celB, the xylanase gene, and two of the pat genes. The pectate lyase gene showed only slightly elevated expression, whereas three of the five examined pat genes were down-regulated during infection in potato. Interestingly, the two up-regulated pat genes showed a noticeable sequence difference compared to the three down-regulated pat genes. These results reveal several new proteins that are likely to be involved in Clavibacter michiganensis subsp. sepedonicus pathogenicity.  相似文献   

14.
Staphylococcus aureus causes a wide range of suppurative infections in humans and animals. Due to its high virulence, ability to adopt various environmental conditions, and acquired multiple drug resistance, treatment of such infections has become difficult. Therefore, there is an immense need to develop alternate drug modalities to control this pathogen. In past few years, phage-encoded endolysin therapy has emerged as a new hope not only due to its ability to specifically kill the target bacteria irrespective of their antibiotic sensitivity but also because of minimum or no side effects, a problem associated with antibiotic therapy. In this article, we report purification of a broad spectrum anti-staphylococcal endolysin (P-27/HP endolysin) encoded by phage P-27/HP isolated from sewage water. On SDS-PAGE endolysin resolved in three polypeptides of molecular weights 33.5, 48.6, and 62.2 kDa. Endolysin exhibited maximum in vitro lytic activity at temperature between 35 and 40°C and pH 7.0. In vivo experiments revealed considerable (99.9%) elimination of S. aureus 27/HP from spleens of endolysin-treated mice and had saved them from death due to bacteremia caused by S. aureus 27/HP challenge infection. Thus, P-27/HP endolysin offers suitable substitute of antibiotics to control S. aureus infections.  相似文献   

15.
16.
The bacterium Staphylococcus aureus is a common cause of human infection, and it is becoming increasingly virulent and resistant to antibiotics. Our understanding of the evolution of this species has been greatly enhanced by the recent sequencing of the genomes of seven strains of S. aureus. Comparative genomic analysis allows us to identify variation in the chromosomes and understand the mechanisms by which this versatile bacterium has accumulated diversity within its genome structure.  相似文献   

17.
Staphylococcus aureus is an opportunistic human pathogen, which can cause life‐threatening disease. Proteome analyses of the bacterium can provide new insights into its pathophysiology and important facets of metabolic adaptation and, thus, aid the recognition of targets for intervention. However, the value of such proteome studies increases with their comprehensiveness. We present an MS–driven, proteome‐wide characterization of the strain S. aureus HG001. Combining 144 high precision proteomic data sets, we identified 19 109 peptides from 2088 distinct S. aureus HG001 proteins, which account for 72% of the predicted ORFs. Peptides were further characterized concerning pI, GRAVY, and detectability scores in order to understand the low peptide coverage of 8.7% (19 109 out of 220 245 theoretical peptides). The high quality peptide‐centric spectra have been organized into a comprehensive peptide fragmentation library (SpectraST) and used for identification of S. aureus‐typic peptides in highly complex host–pathogen interaction experiments, which significantly improved the number of identified S. aureus proteins compared to a MASCOT search. This effort now allows the elucidation of crucial pathophysiological questions in S. aureus‐specific host–pathogen interaction studies through comprehensive proteome analysis. The S. aureus‐specific spectra resource developed here also represents an important spectral repository for SRM or for data‐independent acquisition MS approaches. All MS data have been deposited in the ProteomeXchange with identifier PXD000702 ( http://proteomecentral.proteomexchange.org/dataset/PXD000702 ).  相似文献   

18.

Background  

Staphylococcus aureus expresses several proteases, which are thought to contribute to the virulence of this bacterium. Here we focus on aureolysin, the major thermolysin-like metalloprotease. Despite the importance of aureolysin in the physiology and pathogenesis of S. aureus, relatively little information was so far available concerning the aur gene diversity and mobility within and between the major subdivisions of the S. aureus population. Therefore, an epidemiologically and genetically diverse collection of S. aureus strains was used to determine the range of aureolysin (aur) gene polymorphism.  相似文献   

19.
田洪亮  徐刘溢  彭练慈  朱燕 《微生物学报》2023,63(12):4441-4450
金黄色葡萄球菌(Staphylococcus aureus, SA)被认为是最常见的食源性致病菌之一,引起人畜的感染性疾病,导致皮肤、软组织和血液感染,引发脓毒症和中毒性休克综合征。随着抗生素的滥用,金黄色葡萄球菌的耐药性逐渐增强,导致耐甲氧西林金黄色葡萄球菌(methicillin resistant Staphylococcus aureus, MRSA)的出现,并且在全球范围内散播,严重危害公共卫生安全。目前亟需有效控制SA感染的新疗法,因此本文对金黄色葡萄球菌防治技术的研究进展进行综述,并对其防治前景进行了分析,以期对金黄色葡萄球菌尤其是MRSA的控制提供理论指导。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号