首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
Suramin, a polyanionic compound, which has previously shown to dissociate platelet derived growth factor (PDGF) from its receptor, prevents the differentiation of neural (brain) structures of recombinants of dorsal blastopore lip (Spemann's organizer) and competent neuroectoderm. Furthermore, the suramin treatment changes the prospective differentiation pattern of isolated blastopore lip. While untreated dorsal blastopore lip will differentiate into dorsal mesodermal structures (notochord and somites), suramin treated dorsal blastopore lip will form ventral mesoderm structures, especially heart structures. The results are discussed in the context of the current opinion about the mode of action of different growth factor superfamilies.  相似文献   

2.
3.
Suramin, a polyanionic compound, which is thought to inhibit the binding of growth factors to their receptors, prevents the differentiation of the dorsal blastopore lip of early gastrulae into dorsal mesodermal structures as notochord and somites. Suramin treated blastopore lips form ventral mesodermal structures, mainly heart structures. Several cases showed rythmic contractions ("beating hearts"). Of special interest is the fact that blastopore lips isolated from middle gastrulae followed by suramin treatment differentiate in about 50% of the cases brain structures without the presence of notochord. These data suggest that suramin prevents the differentiation of the dorsal blastopore lip into notochord up to the early middle gastrula stage but no longer the formation of head mesoderm, which is the prequisite for the induction of archencephalic brain structures. Treated chordamesoderm with overlaying ectoderm from late gastrulae will differentiate as untreated controls, namely into dorsal axial structures like notochord, somites and brain structures. The results indicate that primarily a more general or ventral mesodermal signal is transferred from the dorsal vegetal blastomeres (Nieuwkoop center) to the dorsal marginal zone. The dorsalization, which enables the blastopore lip to differentiate into head mesoderm and notochord and in turn to acquire neuralizing activity, takes place during the early steps of gastrulation.  相似文献   

4.
Beating hearts can be induced under in vitro conditions when the dorsal blastopore lip (including the zone of Spemann organizer) is treated with Suramin. In contrast, untreated organizer forms dorsal mesodermal derivatives as notochord and somites. When those in vitro produced heart precursor tissues are transplanted ectopically in the posterior trunk area of early larvae, secondary beating heart structures will be formed. Furthermore, the replacement of the heart primordium of the host embryo by heart tissue induced under in vitro conditions will result in the rescue of the heart anlage. This model could be a valuable tool for the study of the multi-step molecular mechanisms of heart structure induction under in vitro conditions and vasculogenesis after transplantation into the host embryo.  相似文献   

5.
Epi 1, a monoclonal antibody, was generated against an epidermal specific epithelial antigen; it does not stain neural epithelium. We have used Epi 1 as a marker to determine when the spatial patterns delineating neural from nonneural epithelium become established. We used ventral ectoderm in a sandwich assay to show that signals from the central blastopore lip region, passing through the plane of the ectoderm sheet, define the pattern and boundary characteristics of Epi 1 expression. The dorsal blastopore lip at stages 10 and 12 are the strongest in inhibiting Epi 1 expression. The involuted chordamesoderm has only a limited inhibitory effect on Epi 1 expression in ventral ectoderm recombinates and does not appear to establish pattern boundaries. We suggest that the blastopore lip region establishes a preneural bias in the adjacent ectoderm prior to the interaction of the latter with chordamesoderm.  相似文献   

6.
Cell shape changes are critical for morphogenetic events such as gastrulation, neurulation, and organogenesis. However, the cell biology driving cell shape changes is poorly understood, especially in vertebrates. The beginning of Xenopus laevis gastrulation is marked by the apical constriction of bottle cells in the dorsal marginal zone, which bends the tissue and creates a crevice at the blastopore lip. We found that bottle cells contribute significantly to gastrulation, as their shape change can generate the force required for initial blastopore formation. As actin and myosin are often implicated in contraction, we examined their localization and function in bottle cells. F-actin and activated myosin accumulate apically in bottle cells, and actin and myosin inhibitors either prevent or severely perturb bottle cell formation, showing that actomyosin contractility is required for apical constriction. Microtubules were localized in apicobasally directed arrays in bottle cells, emanating from the apical surface. Surprisingly, apical constriction was inhibited in the presence of nocodazole but not taxol, suggesting that intact, but not dynamic, microtubules are required for apical constriction. Our results indicate that actomyosin contractility is required for bottle cell morphogenesis and further suggest a novel and unpredicted role for microtubules during apical constriction.  相似文献   

7.
During gastrulation in Xenopus laevis, the dorsal lip of the blastopore normally appears before the ventral lip. Metabolic gradient models propose that the dorsal lip develops from the region of highest metabolic activity and somehow dominates other regions to prevent them from becoming dorsal. To test these ideas, I applied a temperature gradient of 12 degrees C across the embryo. Localized heating of the prospective ventral vegetal region from early in the first cleavage period until gastrulation causes the blastopore lip to form first by 2 hr at the prospective ventral meridian rather than at the prospective dorsal meridian. Despite this reversal of the timing of blastopore formation, gastrulation is completed, and the neural plate forms at its usual position on the prospective dorsal meridian. This demonstrates that the earliest gastrulating regions of the blastopore do not necessarily become dorsal, nor do they inhibit dorsal development by other regions. It is unlikely that axis polarity is based on regional differences in energy metabolism.  相似文献   

8.
The present study examines putative blastopore determinants in uncleaved Xenopus eggs. Deletion of marginal and lower portions of Xenopus eggs when between 30 and 50% of the first cell cycle has been completed (0.3-0.5 normalized time (NT)) results in the complete absence of the blastopore, while deletion of the vegetal hemisphere during the same period leads to the formation of a smaller blastopore. Extrusion of only yolk and deep cytoplasm of the vegetal hemisphere during 0.3-0.5 NT does not affect the formation or size of the blastopore. Consistently, transplantation of cortical and subcortical cytoplasm from marginal, but not other, sites of eggs at 0.3-0.5 NT to an animal blastomere from 16-cell stage embryos induces an ectopic blastopore and bottle cell-like cells. This does not occur in the same transplantation from eggs at 0.2 NT. These results suggest that the blastopore determinants become localized to the marginal cortical and/or subcortical cytoplasm during 0.2-0.3 NT. Other results suggest the involvement of a hexyleneglycol-sensitive system in the process of localization of the blastopore determinants to the marginal region during 0.2-0.3 NT. The properties and behavior of the putative blastopore determinants are discussed in relation to those of VegT, which previously has been shown to induce ectopic blastopores.  相似文献   

9.
Certain proteins from 'growth factor' families can initiate mesodermal development in animal cap cells of the amphibian blastula. Cells that are in early stages of their response to one such factor, XTC-MIF (Smith et al. 1988), initiate the formation of a new axial body plan when grafted to the ventral marginal zone of a similarly aged host embryo (Cooke et al. 1987). This replicates the natural control of this phase of development by the dorsal blastoporal lip when similarly grafted; the classical 'organiser' phenomenon. I have explored systematically the effect, upon the outcome of this pattern formation using defined inducing factors, of varying graft size, XTC-MIF concentration to which graft cells were exposed, length of exposure before grafting, and host age. The 'mesodermal organiser' status, evoked by the factor, appears to be stable, and the variables most influencing the degree of completeness and orderliness of second patterns are graft size and factor concentration. Inappropriately large grafts are not effective. A Xenopus basic fibroblast growth factor homologue, present in the embryo and known to be a strong inducer but of mesoderm with a different character from that induced by XTC-MIF, produced no episode of pattern formation at all when tested in the procedure described in this paper. Organiser status of grafts that have been exposed to mixtures of the two factors is set entirely by the supplied XTC-MIF concentration. Lineage labelling of these grafts, and of classical dorsal lip grafts, reveals closely similar though not identical patterns of contribution to the new structure within the host. Implications of the results for the normal mechanism of body pattern formation are discussed.  相似文献   

10.
11.
Normally developing embryos of Xenopus were fixed at various stages between the blastula and early tail bud stage, and their serial sections were examined. The marginal belt of the blastula was characterized by abundance of cells with RNA-rich peripheral cytoplasm called mesoplasm. At the early gastrula stage, the marginal belt was folded into two layers giving rise to mesodermal material and marginal ectoderm. During gastrulation, the mesodermal material, which consisted of RNA-rich cells, spread to enclose the blastocoel and the endoderm, and a large part of it was shifted to the dorsal side of the embryo. It gradually established the mesodermal layer. The notochord was formed on the dorsal lip of the blastopore by involution, separately from preformed mesodermal material. The RNA-rich cells in the marginal ectoderm became columnar, forming a broad belt in the marginal zone. This belt was deformed and shifted to the dorsal side during gastrulation, eventually establishing the neural plate showing quantitative differentiation along the head-tail axis. Possible mechanisms involved in the formation of the neural plate and mesoderm were discussed with reference to the organizer and the mesoplasm.  相似文献   

12.
Abstract. Gastrula ectoderm, isolated from Xenopus laevis , was cultured in Holtfreter solution or modified Leibovitz medium (L-15) by the sandwich-method with or without inducer. The ectoderm (SD cell layers) consists of two cell sheets, representing a superficial (S) and a deep (D) layer. In the L-15 medium rather than in Holtfreter solution, the two cell layers separate out into distinct cell masses. This difference in cell affinity under certain experimental conditions could indicate that the deep layer contains endodermal cells. However, an endodermal character of the deep layer can be ruled out by induction experiments with vegetalizing factor or dorsal blastopore lip as inducers. Under the influence of vegetalizing factor the outer as well as the inner ectoderm layer differentiated into mesodermal derivatives such as notochord and somites. The results of the experiments with dorsal blastopore lip as inducer indicate that both inner and outer ectoderm layers are responsive to the neural stimulus. The lower neural competence of the outer ectoderm layer observed by several authors in normogenesis is discussed with regard to the hypothesis about short distance diffusion of the neuralizing factor and/or close cell-to-cell contact between inducing tissue and ectodermal target cells.  相似文献   

13.
Glucose transporters (GLUTs) are transmembrane proteins that play an essential role in sugar uptake and energy supply. Thirteen GLUT genes have been described and GLUT1 is the most abundantly expressed member of the family in animal tissues. Deficiencies in human GLUT1 are associated with many diseases, such as metabolic abnormalities, congenital brain defects and oncogenesis. It was suggested recently that Xenopus GLUT1 (xGLUT1) is upregulated by Activin/Nodal signaling, although the developmental role of xGLUT1 remains unclear. Here, we investigated the expression pattern and function of xGLUT1 during Xenopus development. Whole-mount in situ hybridization analysis showed expression of xGLUT1 in the mesodermal region of Xenopus embryos, especially in the dorsal blastopore lip at the gastrula stage. From the neurula stage, it was expressed in the neural plate, eye field, cement gland and somites. Loss-of-function analyses using morpholino antisense oligonucleotides against xGLUT1 (xGLUT1MO) caused microcephaly and axis elongation error. This elongation defect of activin-treated animal caps occurred without downregulation of early mesodermal markers. Moreover, dorsal-marginal explant analysis revealed that cell movement was suppressed in dorsal marginal zones injected with xGLUT1MO. These findings implicate xGLUT1 as an important player during gastrulation cell movement in Xenopus.  相似文献   

14.
Time-lapse cinemicrography was used to show what changes in the number, size, shape, arrangement and what movements of apices of superficial cells occur during epiboly, extension, convergence and blastopore formation in the blastula or gastrula of Xenopus laevis. Epiboly of the animal region occurs by apical expansion of superficial cells at a nearly constant rate from the midblastula to the midgastrula stage. Egression of deep cells into the superficial layer does not occur. Extension of the dorsal marginal zone begins in the late blastula stage with the rapid spreading of the apices of cells in this region and this continues until the onset of neurulation when rapid shrinkage begins. Extension and convergence of the dorsal marginal zone occurs by a rearrangement in which individual cells exchange neighbors and by a change in the shape of the cell apices. Regional differences in apical expansion are accompanied by differences in rate of anticlinal division of superficial cells such that cells in all sectors of the animal region and the marginal zone show similar patterns of decrease in apparent apical area. Shrinkage of the apices of bottle cells during blastopore formation is described. From this and other studies, a model of the cellular behavior of epiboly, extension and convergence is constructed and several hypotheses as to how these activities might generate the mechanical forces of the gastrulation movements are presented.  相似文献   

15.
During gastrulation, diffusible "organizer" signals, including members of the TGFbeta Nodal subfamily, pattern dorsal mesoderm and the embryonic axes. Simultaneously, negative regulators of these signals, including the Nodal inhibitor Lefty, an atypical TGFbeta factor, are induced by Nodal. This suggests that Lefty-dependent modulation of organizer signaling might regulate dorsal mesoderm patterning and axial morphogenesis. Here, Xenopus Lefty (Xlefty) function was blocked by injection of anti-Xlefty morpholino oligonucleotides (MO). Xlefty-deficient embryos underwent exogastrulation, an aberrant morphogenetic process not predicted from deregulation of the Nodal pathway alone. In the absence of Xlefty, both Nodal- (Xnr2, gsc, cer, Xbra) and Wnt-responsive (gsc, Xnr3) organizer gene expression expanded away from the dorsal blastopore lip. Conversely, coexpression of Xlefty with Nodal or Wnt reduced the ectopic expression of Nodal- (Xbra) and Wnt-responsive (Xnr3) genes in a dose-dependent manner. Furthermore, Xlefty expression in the ectodermal animal pole inhibited endogenous Nodal- and Wnt-responsive gene expression in distant mesoderm cells, indicating that Xlefty inhibition can spread from its source. We hypothesize that Xlefty negatively regulates the spatial extent of Nodal- and Wnt-responsive gene expression in the organizer and that this Xlefty-dependent inhibition is essential for normal organizer patterning and gastrulation.  相似文献   

16.
17.
Three methods of Ca2+ administration were used to influence the location of the grey crescent and the dorsal lip of blastopore in R temporaria eggs, ie a Ca2+ microinjection into the subcortical cytoplasm, egg pricking in high Ca2+ solutions and Ca2+ ionophore A23187 microinjection and application. The treatments all induced grey crescent and dorsal lip of blastopore formation near the Ca2+ administration site. Inositol trisphosphate injections gave similar results. Colchicine injections into the eggs inhibited the appearance of both natural and Ca(2+)-induced grey crescents.  相似文献   

18.
The independent roles of blastopore formation and dorsal mesoderm induction in dorsal axis formation of the Cynops pyrrhogaster embryo were attempted to be clarified. The blastopore-forming (bottle) cells originated mainly from the progeny of the mid-dorsal C and/or D blastomeres of the 32-cell embryo, but were not defined to a fixed blastomere. It was confirmed that the isolated dorsal C and D blastomeres autonomously formed a blastopore. Ultraviolet-irradiated eggs formed an abnormal blastopore and then did not form a dorsal axis, although the lower dorsal marginal zone (LDMZ) still had dorsal mesoderm-inducing activity. Involution of the dorsal marginal zone was disturbed by the abnormal blastopore. These embryos were rescued by artificially facilitating involution of the dorsal marginal zone. Suramin-injected and nocodazole-treated blastulae did not have involution of the dorsal marginal zone, although the blastopore was formed. Neither embryos formed the dorsal axis. The dorsal mesoderm-inducing activity of the LDMZ in the nocodazole-treated gastrulae was still active. In contrast, the LDMZ of the suramin-injected embryos lost its dorsal mesoderm-inducing activity. bra expression was activated in the nocodazole-treated embryos but not in the suramin-injected embryos. The present study suggested that (i) the dorsal determinants consist of blastopore-forming and dorsal mesoderm-inducing factors, which are not always mutually dependent; (ii) both factors are activated during the late blastula stage; (iii) the dorsal marginal zone cannot specify to an organized notochord and muscle without the involution that blastopore formation leads to; and (iv) the localization of both factors in the same place is prerequisite for dorsal axis formation.  相似文献   

19.
20.
We have examined the tissue interactions responsible for the expression of heart-forming potency during gastrulation. By comparing the specification of different regions of the marginal zone, we show that heart-forming potency is expressed only in explants containing both the dorsal lip of the blastopore and deep mesoderm between 30 degrees and 45 degrees lateral to the dorsal midline. Embryos from which both of these 30 degrees-45 degrees dorsolateral regions have been removed undergo heart formation in two thirds of cases, as long as the dorsal lip is left intact. If the dorsal lip is removed along with the 30 degrees-45 degrees regions, heart formation does not occur. These results indicate that the dorsolateral deep mesoderm must interact with the dorsal lip in order to express heart-forming potency. Transplantation of the dorsal lip into the ventral marginal zone of host embryos results in the formation of a secondary axis; in over half of cases, this secondary axis includes a heart derived from the host mesoderm. These findings suggest that the establishment of heart mesoderm is initiated by a dorsalizing signal from the dorsal lip of the blastopore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号