共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of factor IIIGLc in catabolite repression-resistant (crr) mutants of Salmonella typhimurium. 总被引:7,自引:7,他引:7
下载免费PDF全文

crr mutants of Salmonella typhimurium are thought to be defective in the regulation of adenylate cyclase and a number of transport systems by the phosphoenolpyruvate-dependent sugar phosphotransferase system, crr mutants are also defective in the enzymatic activity of factor IIIGlc (IIIGlc), a protein component of the phosphotransferase system involved in glucose transport. Therefore, it has been proposed that IIIGlc is the primary effector of phosphotransferase system-mediated regulation of cell metabolism. We characterized crr mutants with respect to the presence and function of IIIGlc by using an immunochemical approach. All of the crr mutants tested had low (0 to 30%) levels of IIIGlc compared with wild-type cells, as determined by rocket immunoelectrophoresis. The IIIGlc isolated from one crr mutant was investigated in more detail and showed abnormal aggregation behavior, which indicated a structural change in the protein. These results supported the hypothesis that a crr mutation directly affects IIIGlc, probably by altering the structural gene of IIIGlc. Several crr strains which appeared to be devoid of IIIGlc in immunoprecipitation assays were still capable of in vitro phosphorylation and transport of methyl alpha-glucoside. This phosphorylation activity was sensitive to specific anti-IIIGlc serum. Moreover, the membranes of crr mutants, as well as those of wild-type cells, contained a protein that reacted strongly with our anti-IIIGlc serum. We propose that S. typhimurium contains a membrane-bound form of IIIGlc which may be involved in phosphotransferase system activity. 相似文献
2.
Transport of thiomethyl-β-D-galactoside (TMG) via the melibiose permease system (TMG permease II) in is known to be a sodium-dependent co-transport system. We have shown that this co-transport of sodium and TMG is associated with extrusion of protons from the cells. The rate and extent of proton extrusion during TMG uptake were measured in wild-type cells and mutants containing internal and extended deletions in the locus. No differences between these various strains were noted. 相似文献
3.
Proline transport in Salmonella typhimurium: putP permease mutants with altered substrate specificity. 总被引:3,自引:1,他引:3
下载免费PDF全文

The putP gene encodes a proline permease required for Salmonella typhimurium LT2 to grow on proline as the sole source of nitrogen. The wild-type strain is sensitive to two toxic proline analogs (azetidine-2-carboxylic acid and 3,4-dehydroproline) also transported by the putP permease. Most mutations in putP prevent transport of all three substrates. Such mutants are unable to grow on proline and are resistant to both of the analogs. To define domains of the putP gene that specify the substrate binding site, we used localized mutagenesis to isolate rare mutants with altered substrate specificity. The position of the mutations in the putP gene was determined by deletion mapping. Most of the mutations are located in three small (approximately 100-base-pair) deletion intervals of the putP gene. The sensitivity of the mutants to the proline analogs was quantitated by radial streaking to determine the affinity of the mutant permeases for the substrates. Some of the mutants showed apparent changes in the kinetics of the substrates transported. These results indicate that the substrate specificity mutations are probably due to amino acid substitutions at or near the active site of proline permease. 相似文献
4.
Regulation of the methionine feedback-sensitive enzyme in mutants of Salmonella typhimurium 总被引:2,自引:3,他引:2
下载免费PDF全文

D A Lawrence 《Journal of bacteriology》1972,109(1):8-11
Assay of the first enzyme unique to methionine biosynthesis, homoserine-O-transsuccinylase, in metJ and metK regulatory mutants of Salmonella typhimurium showed that synthesis of the enzyme was derepressed seven- and fourfold, respectively. The possibility of noncoordinate regulation of the methionine enzymes is discussed. In metA feedback-resistant mutants, the enzyme activity can be inhibited in vitro by 10 mmS-adenosylmethionine but not by 10 mm l-methionine; hence, the synergistic inhibition found for the wild-type enzyme is not effective in these latter mutants. 相似文献
5.
Regulation of nitrogen utilization of hisT mutants of Salmonella typhimurium. 总被引:1,自引:7,他引:1
下载免费PDF全文

Mutations in the hisT gene of Salmonella typhimurium alter pseudouridine synthetase I, the enzyme that modifies two uridines in the anticodon loop of numerous transfer ribonucleic acid species. We have examined two strains carrying different hisT mutations for their ability to grow on a variety of nitrogen sources. The hisT mutants grew more rapidly than did hisT+ strains with either arginine or proline as the nitrogen source and glucose as the carbon source. The hisT mutations were transduced into new strains to show that these growth properties were due to the hisT mutations. The hisT mutations did not influence the growth of mutants having altered glutamine synthetase regulation. Assays of the three primary ammonia-assimilatory enzymes, glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, showed that glutamate synthase activities were lower in hisT mutants than in isogenic hisT+ controls; however, the glutamate dehydrogenase activity was about threefold higher in the hisT strains grown in glucose-arginine medium. The results suggest that the controls for enzyme synthesis for nitrogen utilization respond either directly or indirectly to transfer ribonucleic acid species affected by the hisT mutation. 相似文献
6.
rfaP mutants of Salmonella typhimurium 总被引:13,自引:0,他引:13
I M Helander M Vaara S Sukupolvi M Rhen S Saarela U Z?hringer P H M?kel? 《European journal of biochemistry》1989,185(3):541-546
Salmonella typhimurium rfaP mutants were isolated and characterised with respect to their sensitivity towards hydrophobic antibiotics and detergents, and their lipopolysaccharides were chemically analysed. The rfaP mutants were selected after diethylsulfate mutagenesis or as spontaneous mutants. The mutation in two independent mutants SH7770 (line LT2) and SH8551 (line TML) was mapped by cotransduction with cysE to the rfa locus. The mutants were sensitive to hydrophobic antibiotics (clindamycin, erythromycin and novobiocin) and detergents (benzalkoniumchloride and sodium dodecyl sulfate). Analysis of their lipopolysaccharides by chemical methods and by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that their saccharide portion was, to a large extent, of chemotype Rc with small proportions of material containing a more complete core oligosaccharide and O-specific chains. Only 2.5 mol phosphate/mol lipopolysaccharide was found whereas the phosphate content of the lipopolysaccharide of a galE mutant strain was 4.8 mol. Thus the rfaP mutant lipopolysaccharides lacked more than two phosphate residues. Assessment of the location of phosphate groups in rfaP lipopolysaccharides revealed the presence of at least 2 mol phosphate in lipid A, indicating that the core oligosaccharide was almost devoid of phosphate. The chemical, physiological and genetic data obtained for these mutants are in full agreement with those reported earlier for rfaP mutants of Salmonella minnesota. 相似文献
7.
Identification and mapping of a second proline permease Salmonella typhimurium 总被引:3,自引:13,他引:3
下载免费PDF全文

In this paper we demonstrate the existence of a second proline permease, gene proP, in Salmonella typhimurium. Uptake assays demonstrate that this second proline permease has 5 to 10% the uptake rate of the putP permease, the cell's major proline permease, when assayed at 20 microM proline. Genetic mapping by Hfr and P22-mediated genetic crosses placed the second proline permease gene at 92 min on the S. typhimurium genetic map, near the genes for melibiose utilization. F'-mediated complementation tests indicated that Escherichia coli also has the proP gene. 相似文献
8.
6-Aminonicotinamide-resistant mutants of Salmonella typhimurium 总被引:4,自引:4,他引:4
Resistance to the nicotinamide analog 6-aminonicotinamide has been used to identify the following three new classes of mutants in pyridine nucleotide metabolism. (i) pncX mutants have Tn10 insertion mutations near the pncA locus which reduce but do not eliminate the pncA product, nicotinamide deamidase. (ii) nadB (6-aminonicotinamide-resistant) mutants have dominant alleles of the nadB gene, which we propose are altered in feedback inhibition of the nadB enzyme, L-aspartate oxidase. Many of these mutants also exhibit a temperature-sensitive nicotinamide requirement phenotype. (iii) nadD mutants have mutations that affect a new gene involved in pyridine nucleotide metabolism. Since a high proportion of nadD mutations are temperature-sensitive lethal mutations, this appears to be an essential gene for NAD and NADP biosynthesis. In vivo labeling experiments indicate that in all the above cases, resistance is gained by increasing the ratio of NAD to 6-aminonicotinamide adenine dinucleotide. 6-Aminonicotinamide adenine dinucleotide turns over significantly more slowly in vivo than does normal NAD. 相似文献
9.
10.
Mutagenicity of methyl nitrite in Salmonella typhimurium 总被引:1,自引:0,他引:1
Methyl nitrite was tested for mutagenicity in Salmonella typhimurium TA1535. In the first set of experiments, plated bacteria were exposed to methyl nitrite in desiccators both in the absence and presence of a metabolizing system (S9 from Aroclor-pretreated Sprague-Dawley rats). Initial concentrations from 125 to 500 ppm were tested. In all experiments an increased initial concentration gave an increased mutagenic response. The mutagenic effect in the presence of S9 was similar to that in the absence of S9. Owing to difficulties in dose determinations in this type of experiment it could not be decided, unequivocally, whether the mutagenic effect was caused by methyl nitrite or its hydrolysis products. Experiments were therefore carried out in suspension, and the concentrations of methyl nitrite and inorganic nitrite were determined. Treatments with inorganic nitrite were also carried out under similar conditions. From the results of these experiments we concluded that methyl nitrite is mutagenic. Possible mechanisms of action of methyl nitrite are discussed, and it is suggested that mutagenicity may be a general property of alkyl nitrites. 相似文献
11.
The oligopeptide permease (Opp) of Salmonella typhimurium is a periplasmic binding protein-dependent transport system and handles any peptides containing from two to five amino acid residues. Opp plays an important nutritional role and is also required for the recycling of cell wall peptides. We have determined the nucleotide sequence of the opp operon. In addition to the four opp genes identified previously by genetic means (oppABCD) a fifth gene, oppF, is shown to be cotranscribed as part of the opp operon. Using reverse genetics, we show that oppF also encodes an essential component of the Opp transport system. The five proteins, OppABCDF, are shown to be the only proteins required for Opp function. Regulation of opp expression and of the differential expression of genes within the operon is investigated. We have devised a simple means of constructing lacZ gene fusions to any S. typhimurium chromosomal gene in vivo, using derivatives of bacteriophage Mu. Using this procedure, opp-lacZ gene fusions were selected. The resultant Opp-LacZ hybrid proteins were used to show that OppB, OppC and OppD are membrane-associated proteins. A detailed comparison of the Opp components with those of other binding protein-dependent transport systems provides insight into the mechanisms and evolution of these transport systems. 相似文献
12.
Genetic analysis of mutants of Salmonella typhimurium deficient in formate dehydrogenase activity 总被引:2,自引:0,他引:2
M. C. Pascal F. Casse M. Chippaux M. Lepelletier 《Molecular & general genetics : MGG》1973,120(4):337-340
Summary A genetical study of mutants of Salmonella typhimurium deficient in formate dehydrogenase activity was performed. The affected gene was designated fdh A and mapped at 116 min, the order of genes in that region being xyl-fdh A-mtl-cys E.Abbreviations FHL formate hydrogenylase - FDH (PMS) formate dehydrogenase (phenazine methosulfate) - FDH (BV) formate dehydrogenase (benzyl viologen) - HYD hydrogenase - NR nitrate-reductase - TTR tetrathionate-reductase 相似文献
13.
14.
15.
16.
Spontaneously occurring mutants of Salmonella typhimurium resistant to 5-fluoroorotate (5-FOA) were isolated. One class of mutant showed marked derepression of pyrimidine biosynthetic enzymes and had the unusual property of being unable to grow on nutrient agar. However, when the osmotic strength of nutrient agar was increased, the mutants were able to grow. The genetic basis for the osmotic fragility and elevated pyr enzyme synthesis was the result of mutations affecting pyrH, encoding the enzyme uridine 5'-monophosphate kinase. 相似文献
17.
Mutants of Salmonella typhimurium deficient in dipeptidyl carboxypeptidase have been isolated by screening for clones unable to use N-acetyl-L-alanyl-L-alanyl-L-alanine (AcAla3) as the sole nitrogen source. An insertion of the transposable element Tn10 near dcp (the locus coding for dipeptidyl carboxypeptidase) has been isolated and used to map the locus in the interval between purB and trp, an otherwise genetically silent region of the S. typhimurium map. All dcp mutants could still grow using N-acetyl-L-alanyl-L-alanyl-L-alanyl-L-alanine (AcAla4) as the sole nitrogen source. Crude extracts from the dcp mutants failed to hydrolyze AcAla3 but retained approximately 80% of the wild-type activity toward AcAla4. Several lines of evidence indicate that hydrolysis of AcAla4 in the dcp mutant results from the action of a new peptidase distinct from dipeptidyl carboxypeptidase. A mutant strain lacking dipeptidyl carboxypeptidase in addition to peptidases N, A, B, and D showed reduced protein breakdown during carbon starvation compared with a strain lacking only peptidases N, A, B, and D. 相似文献
18.
Two mutants of Salmonella typhimurium LT2, which were temperature-sensitive for lipopolysaccharide (LPS) synthesis, were isolated from a galE- strain based on their resistance to phage C21 and sensitivity to sodium deoxycholate at 42°C. They produced LPS of chemotype Rc at 30°C and deep-rough LPS at 42°C. P22-mediated transductional analysis showed that the mutations responsible for temperature sensitivity are located in the rfa cluster where several genes involved in the synthesis of the LPS core are mapped. A plasmid, carrying rfaC, D and F genes of Escherichia coli K-12, complemented these mutations. These genes are responsible for the synthesis of the inner-core region of the LPS molecule. This indicates that genetic defects in these temperature-sensitive mutants affect the inner-core region of LPS. 相似文献
19.
Regulatory citrate lyase mutants of Salmonella typhimurium 总被引:1,自引:1,他引:1
H G Kulla 《Journal of bacteriology》1983,153(1):546-549
Citrate lyase, the key enzyme of anaerobic citrate catabolism, could not be deleted from Salmonella typhimurium. The only class of mutants found had a mode of covalent regulation that strongly resembled the Escherichia coli system: citrate lyase was only active, i.e., acetylated, when a cosubstrate was present. 相似文献
20.
Evaluation of alternariol and alternariol methyl ether for mutagenic activity in Salmonella typhimurium.
下载免费PDF全文

Alternariol and alternariol methyl ether were tested in the Ames Salmonella typhimurium assay, and both were shown, with and without metabolic activation, to be nonmutagenic to strains TA98 and TA100. The finding of other investigators that alternariol methyl ether is weakly mutagenic to TA98 without metabolic activation could have resulted from the presence of a small amount of one of the highly mutagenic altertoxins in the alternariol methyl ether originally tested. 相似文献