首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated and characterized AtREM1, the Arabidopsis ortholog of the cauliflower (Brassica oleracea) BoREM1. AtREM1 belongs to a large gene family of more than 20 members in Arabidopsis. The deduced AtREM1 protein contains several repeats of a B3-related domain, and it could represent a new class of regulatory proteins only found in plants. Expression of AtREM1 is developmentally regulated, being first localized in a few central cells of vegetative apical meristems, and later expanding to the whole inflorescence meristem, as well as primordia and organs of third and fourth floral whorls. This specific expression pattern suggests a role in the organization of reproductive meristems, as well as during flower organ development.  相似文献   

2.
3.
A unique feature of flowering plants is their ability to produce organs continuously, for hundreds of years in some species, from actively growing tips called apical meristems. All plants possess at least one form of apical meristem, whose cells are functionally analogous to animal stem cells because they can generate specialized organs and tissues. The shoot apical meristem of angiosperm plants acts as a continuous source of pluripotent stem cells, whose descendents become incorporated into organ primordia and acquire different fates. Recent studies are unveiling some of the molecular pathways that specify stem cell fate in the center of the shoot apical meristem, that confer organ founder cell fate on the periphery, and that connect meristem patterning elements with events at the cellular level. The results are providing important insights into the mechanisms through which shoot apical meristems integrate cell fate decisions with cellular proliferation and global regulation of growth and development.  相似文献   

4.
Plants display a wide variety of three dimensional forms, or architectures, that are critical for their survival in competitive environments or, in the case of crops, for their productivity. Architecture is generated after embryogenesis through the activities of shoot apical meristems and root apical meristems. Leaves are the principal lateral organ that determines the plant shoot morphology, and they normally develop in very regular patterns in time and space. The spatial pattern of leaf arrangement is called phyllotaxy, and the temporal pattern is determined by the plastochron, which is the time between successive leaf initiation events. Both programs involve many gene activities as well as the hormones auxin and cytokinin. Apparently, the mechanisms controlling phyllotaxy and plastochron share some regulatory components. In this review, the molecular mechanisms for both patterning programs will be discussed.  相似文献   

5.
6.
Formation of lateral organ primordia from the shoot apical meristem creates boundaries that separate the primordium from surrounding tissue. Morphological and gene expression studies indicate the presence of a distinct set of cells that define the boundaries in the plant shoot apex. Cells at the boundary usually display reduced growth activity that results in separation of adjacent organs or tissues and this morphological boundary coincides with the border of different cell identities. Such morphogenetic and patterning events and their spatial coordination are controlled by a number of boundary-specific regulatory genes. The boundary may also act as a reference point for the generation of new meristems such as axillary meristems. Many of the genes involved in meristem initiation are expressed in the boundary. This review summarizes the cellular characters of the shoot organ boundary and the roles of regulatory genes that control different aspects of this unique region in plant development.  相似文献   

7.
8.
Indeterminate growth and the production of new organs in plants require a constant supply of new cells. The majority of these cells are produced in mitotic regions called meristems. For primary or tip growth of the roots and shoots, the meristems are located in the apices. These apical meristems have been shown to function as developmentally regulated and environmentally responsive stem cell niches. The principle requirements to maintain a functioning meristem in a dynamic system are a balance of cell division and differentiation and the regulation of the planes of cell division and expansion. Woody plants also have secondary indeterminate mitotic regions towards the exterior of roots, stems and branches that produce the cells for continued growth in girth. The chief secondary meristem is the vascular cambium (VC). As its name implies, cells produced in the VC contribute to the growth in girth via the production of secondary vascular elements. Although we know a considerable amount about the cellular and molecular basis of the apical meristems, our knowledge of the cellular basis and molecular functioning of the VC has been rudimentary. This is now changing as a growing body of research shows that the primary and secondary meristems share some common fundamental regulatory mechanisms. In this review, we outline recent research that is leading to a better understanding of the molecular forces that shape the cellular structure and function of the VC.  相似文献   

9.
10.
In plant, post-embryonic development relies on the activities of indeterminate cell populations termed meristems, spatially clustered cell lineages, wherein a subset divides indeterminately. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent cells offsets the output of differentiating cells. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the plant meristems and play important roles in maintaining meristematic cell identity. We have analyzed the expression pattern of HtKNOT1, a class I KNOX gene of Helianthus tuberosus, in stems, inflorescence meristems, floral meristems and floral organs. HtKNOT1 is expressed in cambial cells, phloem cells and xylematic parenchyma within apical stem internodes, while in basal internodes HtKNOT1 expression was restricted to the presumptive initials and recently derived phloem cells. In the reproductive phase, HtKNOT1 mRNAs were detected in both the inflorescence and floral meristems as well within lateral organ primordia (i.e. floral bracts, petals, stamens and carpels). In more differentiated flowers, the expression of HtKNOT1 was restricted to developing ovules and pollen mother cells. HtKNOT1 may play a dual role being required to maintain the meristem initials as well as initiating differentiation and/or conferring new cell identity. In particular, it is possible that HtKNOT1 cooperates at floral level with additional factors that more specifically control floral organs and pollen development in H. tuberosus.  相似文献   

11.
In contrast to animals, organogenesis in plants is continuous, allowing development in response to intrinsic and extrinsic signals. Organs arise from primordia formed on the flanks of meristems. The apical meristem produces primordia that acquire leaf identity, while floral meristems form primordia which develop into four organ types: sepals, petals, stamens and carpels. The production of mature organs involves two distinct processes, the initiation of organ primordia and the establishment of meristem, primordia and cell identities. Here we concentrate on floral organogenesis in Arabidopsis and examine the extent to which these processes utilize similar control mechanisms and regulatory molecules.  相似文献   

12.
13.
The cell division pattern in the apical meristem of Psilotum nudum was examined using epi-illumination microscopy and a paraffin method. In the subterranean axis, about half of the derivative cells of the apical cell produce tetrahedral daughter apical cells by the first three or more oblique divisions. Roughly half of these apical cells give rise to the apical meristems of axes, whereas the other half do not. Various relative activities of the mother and daughter apical cells give rise to disordered branching patterns. In the ill-organized apical meristem as well as the leafless and capless structure, the Psilotum subterranean axis differs from the basic organs of vascular plants such as stem and root and seems to be an independent organ. The cell division pattern characteristic of the subterranean axis persists in the young unbranched aerial shoots, although fewer daughter apical cells are produced. Dichotomous branching of the aerial shoots, as in a variety of organs of pteridophytes, involves loss of the mother apical cell followed by appearance of two daughter apical cells.  相似文献   

14.
The shoot and root apical meristems (SAM and RAM, respectively) of plants serve both as sites of cell division and as stem cell niches. The SAM is also responsible for the initiation of new leaves, whereas the analogous process of lateral root initiation occurs in the pericycle, a specialized layer of cells that retains organogenic potential within an otherwise non-dividing region of the root. A picture is emerging of how cell division, growth, and differentiation are coordinated in the meristems and lateral organ primordia of plants. This is starting to reveal striking parallels between the control of stem cell maintenance in both shoots and roots, and to provide information on how signalling from developmental processes and the environment impact on cell behaviour within meristems.  相似文献   

15.
16.
Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 single mutants were indistinguishable from wild-type plants, the obe1 obe2 double mutant displayed premature termination of the shoot meristem, suggesting that OBE1 and OBE2 function redundantly. Further analyses revealed that OBE1 and OBE2 allow the plant cells to acquire meristematic activity via the WUSCHEL-CLAVATA pathway, which is required for the maintenance of the stem cell population, and they function parallel to the SHOOT MERISTEMLESS gene, which is required for preventing cell differentiation in the shoot meristem. In addition, obe1 obe2 mutants failed to establish the root apical meristem, lacking both the initial cells and the quiescent center. In situ hybridization revealed that expression of PLETHORA and SCARECROW, which are required for stem cell specification and maintenance in the root meristem, was lost from obe1 obe2 mutant embryos. Taken together, these data suggest that the OBE1 and OBE2 genes are functionally redundant and crucial for the maintenance and/or establishment of both the shoot and root meristems.  相似文献   

17.
18.
Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.  相似文献   

19.
FPF1 promotes flowering in Arabidopsis.   总被引:10,自引:1,他引:9       下载免费PDF全文
T Kania  D Russenberger  S Peng  K Apel    S Melzer 《The Plant cell》1997,9(8):1327-1338
We have characterized the gene flowering promoting factor1 (FPF1), which is expressed in apical meristems immediately after the photoperiodic induction of flowering in the long-day plants mustard and Arabidopsis. In early transition stages, expression is only detectable in the peripheral zone of apical meristems; however, later on, it can also be found in floral meristems and in axillary meristems that form secondary inflorescences. The FPF1 gene encodes a 12.6-kD protein that has no homology to any previously identified protein of known function. Constitutive expression of the gene in Arabidopsis under control of the cauliflower mosaic virus 35S promoter resulted in a dominant heritable trait of early flowering under both short- and long-day conditions. Treatments with gibberellin (GA) and paclobutrazol, a GA biosynthesis inhibitor, as well as crosses with GA-deficient mutants indicate that FPF1 is involved in a GA-dependent signaling pathway and modulates a GA response in apical meristems during the transition to flowering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号