首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the “stargate”, allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane–containing viruses.  相似文献   

2.
Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.  相似文献   

3.
An essential component in the assembly of nucleocapsids of tailed bacteriophages and of herpes viruses is the portal protein that is located at the unique vertex of the icosahedral capsid through which DNA movements occur. A library of mutations in the bacteriophage SPP1 portal protein (gp6) was generated by random mutagenesis of gene 6. Screening of the library allowed identification of 67 single amino acid substitutions that impair portal protein function. Most of the mutations cluster within stretches of a few amino acids in the gp6 carboxyl-terminus. The mutations were divided into five classes according to the step of virus assembly that they impair: (1) production of stable gp6; (2) interaction of gp6 with the minor capsid protein gp7; (3) incorporation of gp6 in the procapsid structure; (4) DNA packaging; and (5) sizing of the packaged DNA molecule. Most of the mutations fell in classes 3 and 4. This is the first high-resolution functional map of a portal protein, in which its function at different steps of viral assembly can be directly correlated with specific regions of its sequence. The work provides a framework for the understanding of central processes in the assembly of viruses that use specialized portals to govern entry and exit of DNA from the viral capsid.  相似文献   

4.
Herpes simplex virus type 1 is a human pathogen responsible for a range of illnesses from cold sores to encephalitis. The icosahedral capsid has a portal at one fivefold vertex which, by analogy to portal-containing phages, is believed to mediate genome entry and exit. We used electron cryotomography to determine the structure of capsids lacking pentons. The portal vertex appears different from pentons, being located partially inside the capsid shell, a position equivalent to that of bacteriophage portals. Such similarity in portal organization supports the idea of the evolutionary relatedness of these viruses.  相似文献   

5.
In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.  相似文献   

6.
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.  相似文献   

7.
Herpes viruses are prevalent and well characterized human pathogens. Despite extensive study, much remains to be learned about the structure of the genome packaging and release machinery in the capsids of these large and complex double-stranded DNA viruses. However, such machinery is well characterized in tailed bacteriophage, which share a common evolutionary origin with herpesvirus. In tailed bacteriophage, the genome exits from the virus particle through a portal and is transferred into the host cell by a complex apparatus (i.e. the tail) located at the portal vertex. Here we use electron cryo-tomography of human herpes simplex type-1 (HSV-1) virions to reveal a previously unsuspected feature at the portal vertex, which extends across the HSV-1 tegument layer to form a connection between the capsid and the viral membrane. The location of this assembly suggests that it plays a role in genome release into the nucleus and is also important for virion architecture.  相似文献   

8.
Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the “wing” and “crown” domains inside the phage head. A long “stem” encloses a central channel, and a narrow “stalk” protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The “tunnel” loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging.  相似文献   

9.
Mimivirus is the largest known virus whose genome and physical size are comparable to some small bacteria, blurring the boundary between a virus and a cell. Structural studies of Mimivirus have been difficult because of its size and long surface fibers. Here we report the use of enzymatic digestions to remove the surface fibers of Mimivirus in order to expose the surface of the viral capsid. Cryo-electron microscopy (cryoEM) and atomic force microscopy were able to show that the 20 icosahedral faces of Mimivirus capsids have hexagonal arrays of depressions. Each depression is surrounded by six trimeric capsomers that are similar in structure to those in many other large, icosahedral double-stranded DNA viruses. Whereas in most viruses these capsomers are hexagonally close-packed with the same orientation in each face, in Mimivirus there are vacancies at the systematic depressions with neighboring capsomers differing in orientation by 60°. The previously observed starfish-shaped feature is well-resolved and found to be on each virus particle and is associated with a special pentameric vertex. The arms of the starfish fit into the gaps between the five faces surrounding the unique vertex, acting as a seal. Furthermore, the enveloped nucleocapsid is accurately positioned and oriented within the capsid with a concave surface facing the unique vertex. Thus, the starfish-shaped feature and the organization of the nucleocapsid might regulate the delivery of the genome to the host. The structure of Mimivirus, as well as the various fiber components observed in the virus, suggests that the Mimivirus genome includes genes derived from both eukaryotic and prokaryotic organisms. The three-dimensional cryoEM reconstruction reported here is of a virus with a volume that is one order of magnitude larger than any previously reported molecular assembly studied at a resolution of equal to or better than 65 Å.  相似文献   

10.
PRD1 is the type virus of the Tectiviridae family. Its linear double-stranded DNA genome has covalently attached terminal proteins and is surrounded by a membrane, which is further enclosed within an icosahedral protein capsid. Similar to tailed bacteriophages, PRD1 packages its DNA into a preformed procapsid. The PRD1 putative packaging ATPase P9 is a structural protein located at a unique vertex of the capsid. An in vitro system for packaging DNA into preformed empty procapsids was developed. The system uses cell extracts of overexpressed P9 protein and empty procapsids from a P9-deficient mutant virus infection and PRD1 DNA containing a LacZalpha-insert. The in vitro packaged virions produce distinctly blue plaques when plated on a suitable host. This is the first time that a viral genome is packaged in vitro into a membrane vesicle. Comparison of PRD1 P9 with putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses revealed a new packaging ATPase-specific motif. Surprisingly the viruses having this packaging ATPase motif, and thus considered to be related, were the same as those recently grouped together using the coat protein fold and virion architecture. Our finding here strongly supports the idea that all these viruses infecting hosts in all domains of life had a common ancestor.  相似文献   

11.
Icosahedral double-stranded DNA (dsDNA) bacterial viruses are known to package their genomes into preformed procapsids via a unique portal vertex. Bacteriophage PRD1 differs from the more commonly known icosahedral dsDNA phages in that it contains an internal lipid membrane. The packaging of PRD1 is known to proceed via preformed empty capsids. Now, a unique vertex has been shown to exist in PRD1. We show in this study that this unique vertex extends to the virus internal membrane via two integral membrane proteins, P20 and P22. These small membrane proteins are necessary for the binding of the putative packaging ATPase P9, via another capsid protein, P6, to the virus particle.  相似文献   

12.
Double-stranded DNA packaging in icosahedral bacteriophages is driven by an ATPase-coupled packaging machine constituted by the portal protein and two non-structural packaging/terminase proteins assembled at the unique portal vertex of the empty viral capsid. Recent studies show that the N-terminal ATPase site of bacteriophage T4 large terminase protein gp17 is critically required for DNA packaging. It is likely that this is the DNA translocating ATPase that powers directional translocation of DNA into the viral capsid. Defining this ATPase center is therefore fundamentally important to understand the mechanism of ATP-driven DNA translocation in viruses. Using combinatorial mutagenesis and biochemical approaches, we have defined the catalytic carboxylate residue that is required for ATP hydrolysis. Although the original catalytic carboxylate hypothesis suggested the presence of a catalytic glutamate between the Walker A (SRQLGKT(161-167)) and Walker B (MIYID(251-255)) motifs, none of the four candidate glutamic acid residues, E198, E208, E220 and E227, is required for function. However, the E256 residue that is immediately adjacent to the putative Walker B aspartic acid residue (D255) exhibited a phenotypic pattern that is consistent with the catalytic carboxylate function. None of the amino acid substitutions, including the highly conservative D and Q, was tolerated. Biochemical analyses showed that the purified E256V, D, and Q mutant gp17s exhibited a complete loss of gp16-stimulated ATPase activity and in vitro DNA packaging activity, whereas their ATP binding and DNA cleavage functions remained intact. The data suggest that the E256 mutants are trapped in an ATP-bound conformation and are unable to catalyze the ATP hydrolysis-transduction cycle that powers DNA translocation. Thus, this study for the first time identified and characterized a catalytic glutamate residue that is involved in the energy transduction mechanism of a viral DNA packaging machine.  相似文献   

13.
Icosahedral-tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses translocate viral DNA into a preformed procapsid in an ATP-driven reaction by a packaging complex that operates at a portal vertex. A similar packaging system operates in the tailless dsDNA phage PRD1 (Tectiviridae family), except that there is an internal membrane vesicle in the procapsid. The unit-length linear dsDNA genome with covalently linked 5′-terminal proteins enters the procapsid through a unique vertex. Two small integral membrane proteins, P20 and P22, provide a conduit for DNA translocation. The packaging machinery also contains the packaging ATPase P9 and the packaging efficiency factor P6. Here we describe a method used to obtain purified packaging-competent PRD1 procapsids. The optimized in vitro packaging system allowed efficient packaging of defined DNA substrates. We determined that the genome terminal protein P8 is necessary for packaging and provided an estimation of the packaging rate.  相似文献   

14.
Viruses utilize a diverse array of mechanisms to deliver their genomes into hosts. While great strides have been made in understanding the genome delivery of eukaryotic and prokaryotic viruses, little is known about archaeal virus genome delivery and the associated particle changes. The Sulfolobus turreted icosahedral virus (STIV) is a double-stranded DNA (dsDNA) archaeal virus that contains a host-derived membrane sandwiched between the genome and the proteinaceous capsid shell. Using cryo-electron microscopy (cryo-EM) and different biochemical treatments, we identified three viral morphologies that may correspond to biochemical disassembly states of STIV. One of these morphologies was subtly different from the previously published 27-Å-resolution electron density that was interpreted with the crystal structure of the major capsid protein (MCP). However, these particles could be analyzed at 12.5-Å resolution by cryo-EM. Comparing these two structures, we identified the location of multiple proteins forming the large turret-like appendages at the icosahedral vertices, observed heterogeneous glycosylation of the capsid shell, and identified mobile MCP C-terminal arms responsible for tethering and releasing the underlying viral membrane to and from the capsid shell. Collectively, our studies allow us to propose a fusogenic mechanism of genome delivery by STIV, in which the dismantled capsid shell allows for the fusion of the viral and host membranes and the internalization of the viral genome.Viruses are valuable biological tools for manipulating the cellular processes of their hosts, and they can also serve as model systems for describing macromolecular interactions through the analysis of their architecture. The Sulfolobus turreted icosahedral virus (STIV) is an archaeal virus that infects Sulfolobus solfataricus (phylum Crenarchaeota). STIV is a lytic virus that was isolated from an acidic hot spring (>80°C and pH of <3) in Yellowstone National Park (27). Hence, STIV is an important model for studying the biochemical requirements to sustain life in extreme physicochemical conditions and has the potential to become a tool for the biochemical and genetic manipulation of its host—much like bacteriophages lambda, P22, and phi29 have done for their respective hosts.Prior structural studies of STIV using cryo-electron microscopy (cryo-EM), X-ray crystallography, and proteomics have described large pentameric turret-like structures, with petal-like protrusions emanating from their central shafts (27). The T=31d capsid shell is composed of trimeric capsomers exhibiting pseudo-hexagonal symmetry, in which each of the three capsomer subunits donates two viral jelly rolls with its β-sheets normal to the capsid surface (15, 27). Capsomers surrounding the icosahedral 3-fold axes, and their neighboring subunits, make direct contact with the viral membrane via a highly basic C-terminal helix of each subunit (15, 23). Surrounding the base of the turrets are proteins that make contact with the capsid shell and a host-derived viral membrane (15). The viral membrane and the enclosed viral genome are referred to as the lipid core.The capsid architecture of STIV and the crystal structure of its major capsid protein (MCP) are strikingly similar to those of the bacteriophages PRD1, Bam35, and PM2, the alga virus PBCV-1, and the mammalian adenovirus. This similarity suggests that these viruses share an ancestral virus (2, 4, 7, 15, 25). Given the evolutionary relationship shared between STIV and PRD1, we postulated that the large turret-like vertices of STIV were used to inject the viral genome into the Sulfolobus host—a genome delivery mechanism employed by PRD1 (27).A recent report by Brumfield et al. (5) describes gross cellular ultrastructural changes induced in the Sulfolobus host during STIV infection and release. The authors identified distinct particles that appear to be assembly intermediates of STIV en route to maturation. From these intermediates the authors proposed a general mechanism of capsid assembly, in which MCP subunits and minor capsid proteins (mCPs) coassemble with the lipid membrane to form a lipid-enclosed protein vesicle. These vesicles are spherical and lack the double-stranded DNA (dsDNA) genome and turret-like appendages at the vertices.While these studies confirm an empty procapsid intermediate, the corresponding molecular mechanism associated with assembly and disassembly remains to be understood. Moreover, little is known about STIV or other archaeal virus genome delivery into the host. To obtain a better understanding of the molecular mechanism of STIV architecture and its role in genome delivery, we characterized three distinct morphologies of STIV particles using cryo-EM. An image reconstruction of one of these revealed the absence of a number of constituents decorating the STIV capsid. Hence, for simplicity, we refer to the previously reported image reconstruction (27) as “decorated” and the new image reconstruction reported here as “undecorated.” Reference-free two-dimensional (2D) class averages of the second identified morphology reveal a partially decorated STIV lipid core. The third identified morphology corresponds to the isolated STIV lipid core. Taken together, our analyses indicate that these morphologies correspond to different disassembly intermediates of STIV that can be isolated in vitro and help provide a picture of the STIV capsid architecture. Additionally, these morphologies allow us to propose an alternative possible mechanism of genome delivery.  相似文献   

15.
The DNA packaging portal of the phage P22 procapsid is formed of 12 molecules of the 90,000 dalton gene 1 protein. The assembly of this dodecameric complex at a unique capsid vertex requires scaffolding subunits. The mechanism that ensures the location of the 12-fold symmetrical portal at only one of the 12 5-fold vertices of an icosahedral virus capsid presents a unique assembly problem, which, in some viruses, is solved by the portal also acting as initiator of procapsid assembly. Phage P22 procapsids, however, are formed in the absence of the portal protein. The 1-csH137 mutation prevents the incorporation of the portal protein into procapsids. In a mixed infection with cs+ phage, the mutant subunits are able to form functional portals, suggesting that the cold-sensitivity does not affect portal-portal interactions, but affects the interaction of portal subunits with some other molecular species involved in the initiation of portal assembly. Interestingly, the cs defect is suppressed by temperature-sensitive folding mutations at four sites in the P22 tailspike gene 9. The suppression is allele-specific; other tailspike tsf mutations fail to suppress the cs defect. Translation through a suppressor site is required for suppression. This observation is unexpected, since analysis of nonsense mutations in this gene indicates that it is not required for procapsid assembly. Examination of the nucleic acid sequences in the neighborhood of each of the suppressor sites shows significant sequence similarity with the scaffolding gene translational initiation region on the late message. This supports a previously proposed model, in which procapsid assembly is normally initiated in a region on the late messenger RNA that includes the gene 8 start site. By this model, the suppressor mutations may be acting through protein-RNA interactions, changing sequences that identify alternative or competing sites at which the mutant portal subunits may be organized for assembly into the differentiated vertex of the phage capsid.  相似文献   

16.
Newcomb WW  Homa FL  Brown JC 《Journal of virology》2005,79(16):10540-10546
DNA enters the herpes simplex virus capsid by way of a ring-shaped structure called the portal. Each capsid contains a single portal, located at a unique capsid vertex, that is composed of 12 UL6 protein molecules. The position of the portal requires that capsid formation take place in such a way that a portal is incorporated into one of the 12 capsid vertices and excluded from all other locations, including the remaining 11 vertices. Since initiation or nucleation of capsid formation is a unique step in the overall assembly process, involvement of the portal in initiation has the potential to cause its incorporation into a unique vertex. In such a mode of assembly, the portal would need to be involved in initiation but not able to be inserted in subsequent assembly steps. We have used an in vitro capsid assembly system to test whether the portal is involved selectively in initiation. Portal incorporation was compared in capsids assembled from reactions in which (i) portals were present at the beginning of the assembly process and (ii) portals were added after assembly was under way. The results showed that portal-containing capsids were formed only if portals were present at the outset of assembly. A delay caused formation of capsids lacking portals. The findings indicate that if portals are present in reaction mixtures, a portal is incorporated during initiation or another early step in assembly. If no portals are present, assembly is initiated in another, possibly related, way that does not involve a portal.  相似文献   

17.
The assembly and maturation of viruses with icosahedral capsids must be coordinated with icosahedral symmetry. The icosahedral symmetry imposes also the restrictions on the cooperative specific interactions between genomic RNA/DNA and coat proteins that should be reflected in quasi-regular segmentation of viral genomic sequences. Combining discrete direct and double Fourier transforms, we studied the quasi-regular large-scale segmentation in genomic sequences of different ssRNA, ssDNA, and dsDNA viruses. The particular representatives included satellite tobacco mosaic virus (STMV) and the strains of satellite tobacco necrosis virus (STNV), STNV-C, STNV-1, STNV-2, Escherichia phages MS2, ?X174, α3, and HK97, and Simian virus 40. In all their genomes, we found the significant quasi-regular segmentation of genomic sequences related to the virion assembly and the genome packaging within icosahedral capsid. We also found good correspondence between our results and available cryo-electron microscopy data on capsid structures and genome packaging in these viruses. Fourier analysis of genomic sequences provides the additional insight into mechanisms of hierarchical genome packaging and may be used for verification of the concepts of 3-fold or 5-fold intermediates in virion assembly. The results of sequence analysis should be taken into account at the choice of models and data interpretation. They also may be helpful for the development of antiviral drugs.  相似文献   

18.
Bacteriophage N4 encapsidates a 3500-aa-long DNA-dependent RNA polymerase (vRNAP), which is injected into the host along with the N4 genome upon infection. The three-dimensional structures of wild-type and mutant N4 viruses lacking gp17, gp50, or gp65 were determined by cryoelectron microscopy. The virion has an icosahedral capsid with T = 9 quasi-symmetry that encapsidates well-organized double-stranded DNA and vRNAP. The tail, attached at a unique pentameric vertex of the head, consists of a neck, 12 appendages, and six ribbons that constitute a non-contractile sheath around a central tail tube. Comparison of wild-type and mutant virus structures in conjunction with bioinformatics established the identity and virion locations of the major capsid protein (gp56), a decorating protein (gp17), the vRNAP (gp50), the tail sheath (gp65), the appendages (gp66), and the portal protein (gp59). The N4 virion organization provides insight into its assembly and suggests a mechanism for genome and vRNAP transport strategies utilized by this unique system.  相似文献   

19.
Methods for the three-dimensional reconstruction of icosahedral particles, such as spherical viruses, from electron micrographs are well established. These methods take advantage of the 60-fold symmetry of the icosahedral group. Several features within these particles, however, may deviate from icosahedral symmetry. Examples include viral genomes, symmetry mismatched vertex proteins, unique DNA packaging vertices, flexible proteins, and proteins that are present at less than 100% occupancy. Such asymmetrically distributed features are smeared in the final density map when icosahedral symmetry is applied. Here, we describe a novel approach to classifying, analysing, and obtaining three-dimensional reconstructions of such features. The approach uses the orientation information derived from the icosahedral orientation search to facilitate multivariate statistical analysis and to limit the orientational degrees of freedom for reconstruction. We demonstrate the application of this approach to images of Kelp fly Virus. In this case, each virion may have two different types of fivefold vertex. We use our approach to produce independent reconstructions of the two types of vertex.  相似文献   

20.
Double-stranded DNA bacteriophages and their eukaryotic virus counterparts have 12-fold head-tail connector assemblages embedded at a unique capsid vertex. This vertex is the site of assembly of the DNA packaging motor, and the connector has a central channel through which viral DNA passes during genome packaging and subsequent host infection. Crystal structures of connectors from different phages reveal either disordered residues or structured loops that project into the connector channel. Given the proximity to the translocating DNA substrate, these loops have been proposed to play a role in DNA packaging. Previous models have proposed structural motions in either the packaging ATPase or the connector channel loops as the driving force that translocates the DNA into the prohead. Here, we mutate the channel loops of the Bacillus subtilis bacteriophage φ29 connector and show that these loops have no active role in translocation of DNA. Instead, they appear to have an essential function near the end of packaging, acting to retain the packaged DNA in the head in preparation for motor detachment and subsequent tail assembly and virion completion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号