首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, an X-ray co-crystal structure of our hydroxamate inhibitor IK682 and TACE [Niu, X.; Umland, S.; Ingram, R.; Beyer, B. M.; Liu, Y.-H.; Sun, J.; Lundell, D.; Orth, P. Arch. Biochem. Biophys. 2006, 451, 43-50] was published that explicitly shows the orientation of the hydroxamate and the TACE-selective 4-[(2-methyl-4-quinolinyl)methoxy]phenyl P1' group in the S1' and S3' sites. The preceding paper described a novel series of potent and TACE-selective hydantoins and we previously described pyrimidinetrione (barbiturate) inhibitors of TACE, both of which contain the same P1' group as IK682. Using this TACE-selective P1' group as an anchor, stereochemical and conformational constraints in the inhibitors, and restrictions to the active site Zn coordination geometry, we developed a highly plausible and predictive pharmacophore model that rationalizes the observed TACE activity of all three inhibitors.  相似文献   

2.
Phosphinic acid-based inhibitors of MMP-13 have been investigated with the aim of identifying potent inhibitors with high selectivity versus MMP-1. Independent variation of the substituents on a P(1)' phenethyl group and a P(2) benzyl group improved potencies in both cases around 3-fold over the unsubstituted parent. Combining improved P(1)' and P(2) groups into a single molecule gave an inhibitor with a 4.5 nM IC(50) against MMP-13 and which is 270-fold selective over MMP-1.  相似文献   

3.
The crystal structures of bovine pancreatic ribonuclease A (RNase A) in complex with 3',5'-ADP, 2',5'-ADP, 5'-ADP, U-2'-p and U-3'-p have been determined at high resolution. The structures reveal that each inhibitor binds differently in the RNase A active site by anchoring a phosphate group in subsite P1. The most potent inhibitor of all five, 5'-ADP (Ki = 1.2 microM), adopts a syn conformation (in contrast to 3',5'-ADP and 2',5'-ADP, which adopt an anti), and it is the beta- rather than the alpha-phosphate group that binds to P1. 3',5'-ADP binds with the 5'-phosphate group in P1 and the adenosine in the B2 pocket. Two different binding modes are observed in the two RNase A molecules of the asymmetric unit for 2',5'-ADP. This inhibitor binds with either the 3' or the 5' phosphate groups in subsite P1, and in each case, the adenosine binds in two different positions within the B2 subsite. The two uridilyl inhibitors bind similarly with the uridine moiety in the B1 subsite but the placement of a different phosphate group in P1 (2' versus 3') has significant implications on their potency against RNase A. Comparative structural analysis of the RNase A, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and human angiogenin (Ang) complexes with these and other phosphonucleotide inhibitors provides a wealth of information for structure-based design of inhibitors specific for each RNase. These inhibitors could be developed to therapeutic agents that could control the biological activities of EDN, ECP, and ANG, which play key roles in human pathologies.  相似文献   

4.
C G Knight  A J Barrett 《FEBS letters》1991,294(3):183-186
Some novel N-[1(RS)-carboxy-3-phenylpropyl]tripeptide p-aminobenzoates have been synthesised as inhibitors of thimet oligopeptidase (EC 3.4.24.15). These compounds are considered to bind as substrate analogues with the Cpp group in S1 and the peptide portion in the S' sites. The most potent inhibitor is Cpp-Ala-Pro-Phe-pAb, which has a Ki = 7 nM. Substitution of Gly for Ala at P1' leads to weaker binding which can be ascribed to increased rotational freedom. Good substrates often have Pro at P2' and Pro is favoured over Ala at this position in the inhibitors, too. When P2' is Pro, Phe is preferred over Tyr and Trp in P3'. The p-aminobenzoate group makes an important contribution to the binding, probably by forming a salt bridge, and removal of the C-terminal negative charge results in much less potent inhibitors.  相似文献   

5.
Rational design and synthesis of selective BACE-1 inhibitors   总被引:4,自引:0,他引:4  
An effective approach for enhancing the selectivity of beta-site amyloid precursor protein cleaving enzyme (BACE 1) inhibitors is developed based on the unique features of the S1' pocket of the enzyme. A series of low molecular weight (<600) compounds were synthesized with different moieties at the P1' position. The selectivity of BACE 1 inhibitors versus cathepsin D and renin was enhanced 120-fold by replacing the hydrophobic propyl group with a hydrophilic propionic acid group.  相似文献   

6.
Modification of the P(1)' substituent of macrocyclic matrix metalloproteinase (MMP) inhibitors provided compounds that are selective for inhibition of tumor necrosis factor-alpha converting enzyme (TACE) over MMP-1 and MMP-2. Several analogues potently inhibited the release of TNF-alpha in a THP-1 cellular assay. Compounds containing a trimethoxyphenyl group in the P(1)' substituent demonstrated TACE selectivity across several series of hydroxamate-based inhibitors.  相似文献   

7.
Based on the substrate transition state and our strategy to tackle the problem of drug resistance, a series of HIV/FIV protease (HIV /FIV PR) monocyclic inhibitors incorporating a 15- or 17-membered macrocycle with an equivalent P3 or P3' group and a unique unnatural amino acid, (2R, 3S)-3-amino-2-hydroxy-4-phenylbutyric acid, have been designed and synthesized. In addition, based on the structure of TL3 with small P3/P3' group, we have synthesized two conformationally restricted bicyclic inhibitors containing the macrocycle, which mimic the P1/P1'-P3/P3' tripeptide [Phe-Val-Ala] of TL3. We have found that the contribution of the macrocycle in our monocyclic inhibitors is important to the overall activity, but the ring size does not affect the activity to a significant extent. Several inhibitors that were developed in this work, exhibit low nanomolar inhibitory activity against the wild-type HIV/FIV PR and found to be highly effective against some drug-resistant as well as TL3-resistant mutants of HIV PRs. Compound 15, in particular, is the most effective cyclic inhibitor in hand to inhibit FIV replication in tissue culture at a concentration of 1.0 micro g/mL (1.2 microM).  相似文献   

8.
A search for potent inhibitors of EC 3.4.24.11, an enzyme which is found most abundantly in the kidney and which degrades atrial natriuretic factor, has led to the identification of UK-69,578. Structure-activity studies starting from substituted N-carboxymethyl dipeptide inhibitors resulted in the introduction of a cyclo-alkane P1' residue and in the replacement of the aza-link between P1 and P1' residues by a methylene group, with a net ten-fold potency gain. UK-69,578 increases endogenous ANF levels and produces natriuretic and diuretic responses intravenously in mice.  相似文献   

9.
Previous studies of HIV protease inhibitors have shown that it is possible to elongate the P1/P1' sidechains to reach the S3/S3' binding sites. By analogy, we expected that it would be possible to design inhibitors reaching between the S1/S1' and S2/S2' binding sites. Molecular modeling suggested that this could be achieved with appropriate ortho-substitution of the P2/P2' benzyl groups in our cyclic sulfamide inhibitors. Four different spacer groups were investigated. The compounds were smoothly prepared from tartaric acid in five steps and exhibit low to moderate activity, the most potent inhibitor possessing a Ki value of 0.53 microM.  相似文献   

10.
A novel, general, and versatile method of diversification of the P1' position in phosphinic pseudodipeptides, presumable inhibitors of proteolytic enzymes, was elaborated. The procedure was based on parallel derivatization of the amino group in the suitably protected phosphinate building blocks with appropriate alkyl and aryl halides. This synthetic strategy represents an original approach to phosphinic dipeptide chemistry. Its usefulness was confirmed by obtaining a series of P1' modified phosphinic dipeptides, inhibitors of cytosolic leucine aminopeptidase, through computer-aided design basing on the structure of homophenylalanyl-phenylalanine analogue (hPheP[CH(2)]Phe) bound in the enzyme active site as a lead structure. In this approach novel interactions between inhibitor P1' fragment and the S1' region of the enzyme, particularly hydrogen bonding involving Asn330 and Asp332 enzyme residues, were predicted. The details of the design, synthesis, and activity evaluation toward cytosolic leucine aminopeptidase and aminopeptidase N are discussed. Although the potency of the lead compound has not been improved, marked selectivity of the synthesized inhibitors toward both studied enzymes was observed.  相似文献   

11.
An extensive series of synthetic mercaptotripeptides (HS-CH2-CH2-CO-Pro-Yaa) was prepared, and the inhibitory constants were determined on the Clostridium histolyticum collagenase. Among the factors which control the optimal binding of these inhibitors, we found that the presence of a free C-terminal carboxylate group in the position P3' of the compounds is of primary importance. In general, the esterification of this carboxylate group decreased the potency of the inhibitors by two orders of magnitude. We observed also that the enzyme favored the inhibitors having a long linear apolar or basic side-chain at the position P3'. The present data suggest a large S3' subsite of the C. histolyticum collagenase. The compound which contains a homoarginine residue at the P3' position with a Ki of 0.2 microM proved to be the most potent synthetic inhibitor known to date for the C. histolyticum collagenase.  相似文献   

12.
The membrane associated endoprotease, hRCE1, is responsible for one step in Ras membrane localization. The "CAAX" sequence at the C-terminal of farnesylated Ras proteins is cleaved by hRCE1 to yield an AAX tri-peptide. We found that an 8-aa K-Ras-derived "CAA" peptide, KSKTKC(farnesyl)VI, was a better substrate for hRCE1 than a KSKTKC(f)VIM "CAAX" peptide. When we examined hRCE1 activity on the same K-Ras core peptide with H-Ras (VLS) or N-Ras (VVM) C-terminal AAX sequences, we also found that in each case, the CAA peptides were better hRCE1 substrates. For each peptide set we examined, the P2' (A) and P3' (X) positions appeared independent in influencing hRCE1 activity on peptide substrates. We found that at the P3' position, methionine was better than serine; while at the P2' position, isoleucine and valine were better than leucine. Additionally, we found that a similar noncleaved peptide (modified at P'2 with a nitrophenyl group) could act as a competitive inhibitor of the reaction. Thus, hRCE1 has important functional interaction with the P2' and P3' substrate positions in addition to the farnesylated cysteine at the scissile bond site. This data could be useful in design of peptidomimetic inhibitors of hRCE1. Such inhibitors may be useful in treatment of cancer and inflammatory disease.  相似文献   

13.
A new P1' group for TACE inhibitors was identified by eliminating the oxygen atom in the linker of the original 4-(2-methylquinolin-4-ylmethoxy)phenyl P1' group. Incorporation of this 4-(2-methylquinolin-4-ylmethyl)phenyl group onto different beta-aminohydroxamic acid cores provided compound 18, which demonstrated potent porcine TACE (p-TACE) and human whole blood activity, excellent PK properties, and good selectivity against a variety of MMPs.  相似文献   

14.
A series of hydroxamic acids has been prepared as potential inhibitors of glutamate carboxypeptidase II (GCP II). Compounds based on a P1' residue (primed-side inhibitors) were more potent than those based on a P1 group (unprimed-side inhibitors). Inhibitory potency of the primed-side GCP II inhibitors was found to be dependent on the number of methylene units between the hydroxamate group and pentanedioic acid. Succinyl hydroxamic acid derivative, 2-(hydroxycarbamoylmethyl)pentanedioic acid, is the most potent GCP II inhibitor with an IC(50) value of 220nM. The comparison of the results to those of other classes of GCP II inhibitors as well as hydroxamate-based MMP inhibitors provides further insight into the structure-activity relationships of GCP II inhibition.  相似文献   

15.
New inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with a pyrimidine-2,4,6-trione in place of the commonly used hydroxamic acid. These non-hydroxamate TACE inhibitors were developed by incorporating a 4-(2-methyl-4-quinolinylmethoxy)phenyl group, an optimized TACE selective P1' group. Several leads were identified with IC50 values around 100 nM in a porcine TACE assay and selective over MMP-1, -2, -9, -13, and aggrecanase.  相似文献   

16.
The inhibitory constants of a series of synthetic N-carboxymethyl peptide inhibitors and the kinetic parameters (Km, kcat, and kcat/Km) of a series of model synthetic substrates were determined for the membrane-bound kidney metalloendopeptidase isolated from rabbit kidney and compared with those of bacterial thermolysin. The two enzymes show striking similarities with respect to structural requirements for substrate binding to the hydrophobic pocket at the S1' subsite of the active site. Both enzymes showed the highest reaction rates with substrates having leucine residues in this position while phenylalanine residues gave the lowest Km. The two enzymes were also inhibited by the same N-carboxymethyl peptide inhibitors. Although the mammalian enzyme was more susceptible to inhibition than its bacterial counterpart, structural variations in the inhibitor molecules affected the inhibitory constants for both enzymes in a similar manner. The two enzymes differed significantly, however, with respect to the effect of structural changes in the P1 and P2' positions of the substrate on the kinetic parameters of the reaction. The mammalian enzyme showed the highest reaction rates and specificity constants with substrates having the sequence -Phe-Gly-Phe- or -Phe-Ala-Phe- in positions P2, P1, and P1', respectively, while the sequence -Ala-Phe-Phe- was the most favored by the bacterial enzyme. The sequence -Gly-Gly-Phe- as found in enkephalins was not favored by either of the enzymes. Of the substrates having an aminobenzoate group in the P2' position, the mammalian enzyme favored those with the carboxyl group in the meta position while the bacterial enzyme favored those with the carboxyl group in the para position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
HIV-1 protease inhibitors (PI's) bearing 1,3,4-oxadiazoles at the P1' position were prepared by a novel method involving the diastereoselective installation of a carboxylic acid and conversion to the P1' heterocycle. The compounds are picomolar inhibitors of native HIV-1 protease, with most of the compounds maintaining excellent antiviral activity against a panel of PI-resistant strains.  相似文献   

18.
We have discovered selective and potent inhibitors of TACE that replace the common hydroxamate zinc binding group with a hydantoin, triazolone, and imidazolone heterocycle. These novel heterocyclic inhibitors of a zinc metalloprotease were designed using a pharmacophore model that we previously described while developing hydantoin and pyrimidinetrione (barbiturate) inhibitors of TACE. The potency and binding orientation of these inhibitors is discussed and they are modeled into the X-ray crystal structure of TACE and compared to hydroxamate and earlier hydantoin TACE inhibitors which share the same 4-[(2-methyl-4-quinolinyl)methoxy]benzoyl P1' group.  相似文献   

19.
Several macrocyclic, hydroxamate derivatives were synthesized and evaluated as inhibitors of matrix metalloproteinases (MMPs) and tumour necrosis factor-alpha (TNF-alpha) production. These macrocycles are anti-succinate based inhibitors linked from P1 to P2'. A variety of functionality was installed at the P1-P2' linkage, which gave inhibitors that displayed excellent MMP inhibition and good TNF-alpha suppression.  相似文献   

20.
Previously, we reported potent pentapeptidic BACE1 inhibitors with the hydroxymethylcarbonyl isostere as a substrate transition-state mimic. To improve the in vitro potency, we further reported pentapeptidic inhibitors with carboxylic acid bioisosteres at the P(4) and P1' positions. In the current study, we screened new P1' position 1-phenylcycloalkylamine analogs to find non-acidic inhibitors that possess double-digit nanomolar range IC(50) values. An extensive structure-activity relationship study was performed with various amine derivatives at the P1' position. The most potent inhibitor of this pentapeptide series, KMI-1830, possessing 1-phenylcyclopentylamine at the P1' position had an IC(50) value of 11.6 nM against BACE1 in vitro enzymatic assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号