首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Permeability control of glucose-sensitive nanoshells   总被引:1,自引:0,他引:1  
Zhang Y  Guan Y  Zhou S 《Biomacromolecules》2007,8(12):3842-3847
To study the permeability of hydrogel in nanoscale thickness, core-shell microgels with degradable poly( N-isopropylacrylamide) (PNIPAM) as the core and nondegradable phenylboronic acid (PBA)-conjugated poly( N-isopropylacrylamide) [P(NIPAM-PBA)] as the shell were designed and synthesized. Laser light scattering was used to study the volume phase transitions and core degradation behavior of the core-shell microgels. The release of the degraded core polymer chains can be conveniently followed by turbidity change. At room temperature, the degraded polymer segments diffuse freely out of the precursor poly( N-isopropylacrylamide-co-acrylic acid) gel shells in water. In contrast, the PBA-modified P(NIPAM-PBA) nanoshell can hold most of the degraded core polymer chains under the same conditions, thanks to its condensed structure at the collapsed state. Lowering the temperature or increasing pH increases the swelling degree of the P(NIPAM-PBA) shell, which provides methods to control its permeability by temperature and pH. The complexation of PBA groups with glucose also enhances the swelling of the nanoshell and, thus, increases its permeability. The understanding of how to control the permeability of the glucose-sensitive gel nanoshell in hollow microgel particles is very important for further design of self-regulated insulin delivery systems.  相似文献   

2.
Amphoteric, poly(N-isopropylacrylamide)-based microgels are functionalized with aminophenylboronic acid (PBA) functional groups to produce colloidally stable, glucose-responsive gel nanoparticles that exhibit glucose-dependent swelling responses at physiological temperature, pH, and ionic strength. Up to 2-fold volumetric swelling responses are observed in response to physiological glucose concentrations, the first such physiological response reported for a colloidally stable microgel. Amphoteric microgels can also be designed to both swell and deswell in response to glucose according to the pH of the medium, the concentration of PBA groups grafted to the microgel, and the relative concentrations of the cationic and anionic functional groups in the platform microgel. The increasing anionic charge density on the microgels observed at higher glucose binding fractions can be applied to switch the net charge of the microgels from cationic to anionic as the glucose concentration increases. Preliminary experiments suggest that such amphoteric PBA-microgels have a high capacity for insulin uptake and can selectively release more insulin at higher glucose concentrations under physiological conditions via glucose-induced, "on-off" switching of electrostatic attractions between insulin and the microgel.  相似文献   

3.
The work attempts to prepare a totally synthetic, glucose-responsive polymer gel bearing a phenylborate derivative as a sensor moiety to glucose, for future use as a self-regulated insulin delivery system. The molecular strategies to enable the system to be operated under physiological conditions (pH 7.4, 37 degrees C) are presented that involve the use of a novel phenylborate derivative [4-(1,6-dioxo-2,5-diaza-7-oxamyl) phenylboronic acid: DDOPBA] possessing an appreciably low pK(a) ( approximately 7.8), the adoption of poly(N-isopropylmethacrylamide) (PNIPMAAm) for the main chain, which itself undergoes a sharp thermo-induced phase transition at its LCST around 40 degrees C, as well as the introduction of a carboxyl group of methacrylic acid as the third comonomer. Glucose-responsive behaviors of the obtained gels were evaluated based on the changes in the equilibrium swelling degree determined in the presence and the absence of glucose, for various pH and temperature conditions. As a consequence of the combined molecular effects, a sufficient sensitivity of the system was accomplished at physiological pH and in the temperature range close to the physiological condition such as 30 degrees C. Furthermore, the glucose-induced continuous volume changes of the gels were demonstrated under those conditions, which occurred in a remarkably concentration-dependent manner. In these experiments, the critical glucose concentrations to induce the gels' responses in the range of normoglycemic sugar level were observed. These observations may provide us with an excellent prospect for the use of the gel as a self-regulated, insulin-delivery system discretely switching the release at the normoglycemia.  相似文献   

4.
Monodispersed poly(N-isopropylacrylamide) submicrometric microgels modified with a phenylboronic acid (PBA) derivative have been synthesized by precipitation polymerization. Particles with a well-controlled size and adjustable composition were obtained. These particles were found to be glucose responsive at a pH close to the pKa of the PBA derivative, with a swelling degree proportional to the concentration of glucose. In addition, the response to glucose was found to strongly depend on the initial state of the microgel, which depended itself on the initial temperature and the functionalization degree of the particle. This result explained the fundamental difference in the behavior of PBA-poor particles and rich ones in the presence of electrolyte. Interestingly, the latter exhibited a high swelling ratio in the presence of glucose at physiological electrolyte concentration. These particles may serve as building blocks for the design of colorimetric sensors based on the light diffraction of colloidal crystals.  相似文献   

5.
Yao Y  Zhao L  Yang J  Yang J 《Biomacromolecules》2012,13(6):1837-1844
This study is devoted to developing amphiphilic block polymers based on phenylborate ester, which can self-assemble to form nanoparticles, as a glucose-sensitive drug carrier. Poly(ethylene glycol)-block-poly[(2-phenylboronic esters-1,3-dioxane-5-ethyl) methylacrylate] (MPEG5000-block-PBDEMA) was fabricated with MPEG5000-Br as a macroinitiator via atom transfer radical polymerization (ATRP). Using the solvent evaporation method, these block polymers can disperse in aqueous milieu to self-assemble into micellar aggregates with a spherical core-shell structure. Zeta potential and fluorescence techniques analysis showed a good purification effect, high encapsulation efficiency, and loading capacity of fluorescein isothiocyanate (FITC)-insulin-loaded polymeric micelles under optimal conditions. The in vitro insulin release profiles revealed definite glucose-responsive behavior of the polymeric micelles at pH 7.4 and 37 °C, depending on the environmental glucose concentration and the chemical composition of the block polymers. Further, circular dichroism spectroscopy demonstrated that the overall tertiary structure of the released insulin was in great agreement with standard insulin. (1)H NMR results of the polymeric micelles during glucose-responsive process supposed one possible insulin release mechanism via the polymer polarity transition from amphiphilic to double hydrophilic. The analysis of L929 mouse fibroblast cells viability suggested that the polymeric micelles from MPEG5000-block-PPBDEMA had low cell toxicity. The block polymers containing phenylborate ester that responded to changes in the glucose concentration at neutral pH are being aimed for use in self-regulated insulin delivery.  相似文献   

6.
We have fabricated Lipogels consisting of a single POPC lipid bilayer supported by a micrometer-sized, thermoresponsive, hydrophobically modified (HM), hydrogel sphere. The hydrogel consists of a lightly cross-linked poly(N-isopropylacrylamide) (pNIPAM) core surrounded by a highly cross-linked acrylic acid (AA)-rich p(NIPAM-co-AA) shell. The lipid bilayer was assembled by binding liposomes to HM microgels, followed by several cycles of freeze-thaw. The pNIPAM volume phase transition (VPT) at ~32 °C was present both before and after hydrophobic modification and after lipid bilayer coating. Fluorescence studies confirmed the fusion of liposomes into a continuous single bilayer. At a temperature above the VPT, it was found that the volume decrease in the hydrogel was coupled to the appearance of highly curved obtrusions of the uncompromised lipid bilayer into the surroundings. It is anticipated that these properties of Lipogels will prove to be useful in drug delivery applications and in fundamental biophysical studies of membranes.  相似文献   

7.
Xia Y  Gu Y  Zhou X  Xu H  Zhao X  Yaseen M  Lu JR 《Biomacromolecules》2012,13(8):2299-2308
Two types of thermoresponsive microgels, poly(N-isopropylacrylamide) (PNIPAM) microgels and poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAMAC) microgels were synthesized and used as templates for the mineralization of amorphous calcium carbonate (ACC) by diffusion of CO(2) vapor under ambient conditions. Thermosensitive PNIPAM/CaCO(3) hybrid macroscopic hydrogels and micrometer-sized PNIPAMAC/CaCO(3) hybrid microgels were controllably obtained and different mineralization mechanistic processes were proposed. The impact of the loaded CaCO(3) on the size, morphology, stability, and thermosensitivity of the microgels was also analyzed. PNIPAM/CaCO(3) hybrid macrogels had a slight decrease in thermoresponsive phase transition temperature, while PNIPAMAC/CaCO(3) hybrid microgels showed a clear increase in phase transition temperature. The difference reflected different amount and location of ACC in the gel network, causing different interactions with polymer chains. The PNIPAMAC/CaCO(3) microgels formed stable monolayer films on bare silica wafers and glass coverslips upon drying. The microgel films could facilitate the attachment and growth of 3T3 fibroblast cells and their subsequent detachment upon temperature drop from 37 °C to the ambient condition around 20 °C, thus, offering a convenient procedure for cell harvesting.  相似文献   

8.
This study is devoted to the development of novel glucose-responsive polymers that operate under physiological conditions (pH 7.4, 37 degrees C), aiming for future use in a self-regulated insulin delivery system to treat diabetes mellitus. The approach involves the use of a newly synthesized phenylborate derivative [4-(1,6-dioxo-2,5-diaza-7-oxamyl) phenylboronic acid, DDOPBA] possessing an appreciably low pK(a) ( approximately 7.8) as a glucose-sensing moiety, as well as the adoption of poly(N-isopropylmethacrylamide), PNIPMAAm, as the main chain that exhibits critical solution behavior in the range close to physiological temperature. Glucose- and pH-dependent changes in the critical solution behavior of the resultant copolymers were investigated at varying temperatures, revealing definite glucose sensitivities near the physiological conditions. Furthermore, DDOPBA moieties in the copolymers maintained constant apparent pK(a) values even when the temperature approaches the critical solution points of the main chain, indicating that spacing of the phenylborate moiety from the polymer backbone is a feasible way to minimize the microenvironment effect caused by a temperature-induced change in the hydration state of the polymer strands.  相似文献   

9.
The cooperative binding process between the antibiotic peptide polymyxin-B and negatively-charged phosphatidic acid bilayers was investigated by differential thermal analysis and completed by fluorescence polarization measurements. The sigmoidal binding curves were analyzed in terms of the interaction energy within a domain formed by polymyxin and phosphatidic acid molecules. The formation of such a heterogeneous domain structure was favoured by high concentration of external monovalent ions. The cooperativity of the binding increased while a charge-induced decrease in the phase transition temperature of the pure lipid phase was observed with increasing ion concentration at a given pH. The reduced lateral coupling within the lipid bilayer in the presence of salt ions, as demonstrated by an increase in the lipid phase transition enthalpy, was considered to facilitate the cooperative domain formation. Moreover, an increase in the cooperativity of the polymyxin binding could be observed if phosphatidic acids of smaller chain length and thus of a lowered phase transition temperature were used. By the use of chemically-modified polymyxin we were able to demonstrate the effect of electrostatic and hydrophobic interaction. Acetylated polymyxin with a reduced positive charge was used to demonstrate the pure hydrophobic effect of polymyxin binding leading to a decrease in the phosphatidic acid phase transition temperature by about 20 degrees C. The cooperativity of the binding was strongly reduced. Cleavage of the hydrophobic polymyxin tail yielded a colistinnonapeptide which caused an electrostatically-induced increase in the phosphatidic acid phase transition temperature. With unmodified polymyxin we observed the combined effects of electrostatic as well as hydrophobic interaction making this model system interesting for the understanding of lipid-protein interactions. Evidence is presented that the formation of the polymyxin-phosphatidic acid complex is a lateral phase separation phenomenon.  相似文献   

10.
The cooperative binding process between the antibiotic peptide polymyxin-B and negatively-charged phosphatidic acid bilayers was investigated by differential thermal analysis and completed by fluorescence polarization measurements. The sigmoidal binding curves were analyzed in terms of the interaction energy within a domain formed by polymyxin and phosphatidic acid molecules. The formation of such a heterogeneous domain structure was favoured by high concentration of external monovalent ions. The cooperativity of the binding increased while a charge-induced decrease in the phase transition temperature of the pure lipid phase was observed with increasing ion concentration at a given pH. The reduced lateral coupling within the lipid bilayer in the presence of salt ions, as demonstrated by an increase in the lipid phase transition enthalpy, was considered to facilitate the cooperative domain formation. Moreover, an increase in the cooperativity of the polymyxin binding could be observed if phosphatidic acids of smaller chain length and thus of a lowered phase transition temperature were used. By the use of chemically-modified polymyxin we were able to demonstrate the effect of electrostatic and hydrophobic interaction. Acetylated polymyxin with a reduced positive charge was used to demonstrate the pure hydrophobic effect of polymyxin binding leading to a decrease in the phosphatidic acid phase transition temperature by about 20°C. The cooperativity of the binding was strongly reduced. Cleavage of the hydrophobic polymyxin tail yielded a colistinnonapeptide which caused an electrostatically-induced increase in the phosphatidic acid phase transition temperature. With unmodified polymyxin we observed the combined effects of electrostatic as well as hydrophobic interaction making this model system interesting for the understanding of lipid-protein interactions. Evidence is presented that the formation of the polymyxin-phosphatidic acid complex is a lateral phase separation phenomenon.  相似文献   

11.
Poly(N-isopropylacrylamide) (PNIPA) microgels may offer several advantages over PNIPA-modified surfaces when used as sorbents in temperature-sensitive chromatography. Yet, a full exploitation of these advantages requires a better understanding of the mechanisms controlling the separation process. As a model system, we have studied the binding of three proteins (bovine serum albumin (BSA), ovalbumin, and lysozyme) to PNIPA microgels. Binding experiments were conducted both below (25 degrees C) and above (37 degrees C) the volume phase transition temperature of the gel, T(c). The analysis of the binding isotherms has shown that although an average gel particle contained a larger amount of protein below the phase transition temperature, the concentration of the protein within the particle was higher above this temperature. These findings were attributed to changes in the binding loci due to temperature swings around T(c): whereas a sorption mechanism is dominant below this temperature, surface-adsorption was more important above it. A comparison between the three studied proteins has shown that below T(c) the binding increases with a decrease in the molecular weight. On the other hand, no significant difference in the bound protein amounts was observed above the phase transition temperature. Our results imply that, despite the increase in the gel's hydrophobicity above the phase transition temperature, the resolution in bioseparations based on PNIPA gels is not necessarily better above T(c).  相似文献   

12.
The effect of hydrophobic peptides on the lipid phase behavior of an aqueous dispersion of dioleoylphosphatidylethanolamine and dioleoylphosphatidylglycerol (7:3 molar ratio) was studied by (31)P NMR spectroscopy. The peptides (WALPn peptides, where n is the total number of amino acid residues) are designed as models for transmembrane parts of integral membrane proteins and consist of a hydrophobic sequence of alternating leucines and alanines, of variable length, that is flanked on both ends by tryptophans. The pure lipid dispersion was shown to undergo a lamellar-to-isotropic phase transition at approximately 60 degrees C. Small-angle x-ray scattering showed that at a lower water content a cubic phase belonging to the space group Pn3m is formed, suggesting also that the isotropic phase in the lipid dispersion represents a cubic liquid crystalline phase. It was found that the WALP peptides very efficiently promote formation of nonlamellar phases in this lipid system. At a peptide-to-lipid (P/L) molar ratio of 1:1000, the shortest peptide used, WALP16, lowered the lamellar-to-isotropic phase transition by approximately 15 degrees C. This effect was less for longer peptides. For all of the WALP peptides used, an increase in peptide concentration led to a further lowering of the phase transition temperature. At the highest P/L ratio (1:25) studied, WALP16 induced a reversed hexagonal liquid crystalline (H(II)) phase, while the longer peptides still promoted the formation of an isotropic phase. Peptides with a hydrophobic length larger than the bilayer thickness were found to be unable to inhibit formation of the isotropic phase. The results are discussed in terms of mismatch between the hydrophobic length of the peptide and the hydrophobic thickness of the lipid bilayer and its consequences for lipid-protein interactions in membranes.  相似文献   

13.
The phases of simple systems involving one type of protein (lysozyme or cytochrome c) and one type of lipid (phosphatidic acid) have been characterized by X-ray crystallography, chemical analysis and spin-labeling technique as a function of temperature. They are of the lamellar type with alternative protein monolayers and lipid bilayers. According to the pH, two types of lamellar phases are obtained, one where the lipid-protein interactions are mainly hydrophobic, the other where they are electrostatic. In both cases, a phase transition occurs as temperature is lowered, between a high temperature phase, where all the lipids are in the liquid-like state, and another phase where some lipid chains are rigid. In the case of the phases with electrostatic interaction, it is shown that the onset of the order-disorder transition is shifted towards low temperature as compared with the homologous lipid-water phase and that the protein content of the phase decreases as the ratio of the liquid to rigid hydrocarbon chains decreases. This leads us to suggest that in the systems studied in this work the proteins interact only with lipid in the liquid-like state. In the case of the phases with hydrophobic interaction, it is shown that the extent of hydrophobic interaction between protein and lipid increases as the unsaturation of the hydrocarbon chains increases. The onset of the order-disorder transition shows a greater shift towards low temperature than the one observed in the case of the phase with electrostatic interaction.  相似文献   

14.
Radical copolymerization of acrylamide (Am) (90 mol%) with N-acryloyl-m-aminophenylboronic acid (NAAPBA) (10 mol%) carried out on the surface of glass slides in aqueous solution and in the absence of chemical cross-linkers, resulted in the formation of thin semitransparent gels. The phenylboronic acid (PBA) ligand density was ca. 160 micromol/ml gel. The gels exhibited a macroporous structure and displayed optical response to sucrose, lactose, glucose and fructose in 50 mM sodium phosphate buffer, in the pH range from 6.5 to 7.5. The response was fairly reversible and linearly depended on glucose concentration in the wide concentration range from 1 to 60 mM at pH 7.3. The character of response was explained by the balance of two competing equilibrium processes: binding of glucose to phenylboronate anions and binary hydrophobic interactions of neutral PBA groups. The apparent diffusion coefficient of glucose in the gels was ca. 2.5 x 10(-7) cm(2)/s. A freshly prepared gel can be used daily for at least 1 month without changes in sensitivity. Autoclaving (121 degrees C, 1.2 bar, 10 min) allows for the gels sterilization, which is important for their use as glucose sensors in fermentation processes.  相似文献   

15.
Poly(N-isopropylacrylamide)-based [P(NIPAAm)-based] semi-interpenetrating polymer networks (semi-IPNs), consisting of P(NIPAAm)-based hydrogels and linear poly(acrylic acid) [P(AAc)] chains, were synthesized, and the effects of the P(AAc) chains on semi-IPN injectability and phase behavior were analyzed. In P(NIPAAm)- and P(NIPAAm-co-AAc)-based semi-IPN studies, numerous reaction conditions were varied, and the effects of these factors on semi-IPN injectability, transparency, phase transition, lower critical solution temperature (LCST), and volume change were examined. The P(AAc) chains did not significantly affect the LCST or volume change of the semi-IPNs, compared to control hydrogels. However, the P(AAc) chains affected the injectability, transparency, and phase transition of the matrices, and these effects were dependent on chain amount and molecular weight (MW) and on interactions between the P(AAc) chains and the solvent and/or copolymer chains in P(NIPAAm-co-AAc) hydrogels. These results can be used to design "tailored" P(NIPAAm)-based semi-IPNs that have the potential to serve as functional scaffolds in tissue engineering applications.  相似文献   

16.
The phases of simple systems involving one type of protein (lysozyme or cytochrome c) and one type of lipid (phosphatidic acid) have been characterized by X-ray crystallography, chemical analysis and spin-labeling technique as a function of temperature. They are of the lamellar type with alternative protein monolayers and lipid bilayers. According to the pH, two types of lamellar phases are obtained, one where the lipid-protein interactions are mainly hydrophobic, the other where they are electrostatic. In both cases, a phase transition occurs as temperature is lowered, between a high temperature phase, where all the lipids are in the liquid-like state, and another phase where some lipid chains are rigid. In the case of the phases with electrostatic interaction, it is shown that the onset of the order-disorder transition is shifted towards low temperature as compared with the homologous lipid-water phase and that the protein content of the phase decreases as the ratio of the liquid to rigid hydrocarbon chains decreases. This leads us to suggest that in the systems studied in this work the proteins interact only with lipid in the liquid-like state. In the case of the phases with hydrophobic interaction, it is shown that the extent of hydrophobic interaction between protein and lipid increases as the unsaturation of the hydrocarbon chains increases. The onset of the order-disorder transition shows a greater shift towards low temperture than the one observed in the case of the phase with electrostatic interaction.  相似文献   

17.
Comparative thermodynamic studies on the interactions of aqueous dispersions of dipalmitoyl phosphatidylcholine (DPPC) bilayer vesicles with hydrophobic and amphipathic species were conducted to elucidate the nature of the solute-induced interdigitated lipid phase. Cyclohexanol, a strong hydrophobic species, lowers the temperature (tm) of the lipid main phase transition from the gel to the liquid-crystalline phase. Unlike ethanol (an amphipathic species), as reported previously, cyclohexanol does not exert a biphasic effect on tm (lowering tm at lower concentrations and raising tm at higher concentrations). At cyclohexanol greater than or equal to 15.4 mg/ml or 0.154 M, the thermogram of DPPC vesicles exhibits a small transition adjacent to the main phase transition but at a lower temperature. In contrast, ethanol does not promote such a small transition. Furthermore, the enthalpy (delta H) of the transition is increased in the presence of cyclohexanol. The sign of the enthalpy change (delta H-delta Ho) is positive and that of the free energy change (delta G-delta Go) is negative, a characteristic of solute-solute hydrophobic interaction. In contrast, DPPC bilayer vesicles exhibit both (delta H-delta Ho) and (delta G-delta Go) greater than 0 in the presence of ethanol in a concentration range where lipid vesicles exist in an interdigitated phase. To support the above distinct thermodynamic observations, fluorescence steady-state polarization (P) measurements were also performed. At the temperature below tm, the value of P decreases as cyclohexanol concentration increases, while a biphasic effect on P was found in the presence of ethanol. These findings support the postulation that the solute-induced interdigitated lipid phase requires the solute molecule to be amphipathic in nature.  相似文献   

18.
A potential role of arachidonic acid in the modulation of insulin secretion was investigated by measuring its effects on calmodulin-dependent protein kinase and protein kinase C in islet subcellular fractions. The results were interpreted in the light of arachidonic acid effects on insulin secretion from intact islets. Arachidonic acid could replace phosphatidylserine in activation of cytosolic protein kinase C (K0.5 of 10 microM) and maximum activation was observed at 50 microM arachidonate. Arachidonic acid did not affect the Ca2+ requirement of the phosphatidylserine-stimulated activity. Arachidonic acid (200 microM) inhibited (greater than 90%) calmodulin-dependent protein kinase activity (K0.5 = 50-100 microM) but modestly increased basal phosphorylation activity (no added calcium or calmodulin). Arachidonic acid inhibited glucose-sensitive insulin secretion from islets (K0.5 = 24 microM) measured in static secretion assays. Maximum inhibition (approximately 70%) was achieved at 50-100 microM arachidonic acid. Basal insulin secretion (3 mM glucose) was modestly stimulated by 100 microM arachidonic acid but in a non-saturable manner. In perifusion secretion studies, arachidonic acid (20 microM) had no effect on the first phase of glucose-induced secretion but nearly completely suppressed second phase secretion. At basal glucose (4 mM), arachidonic acid induced a modest but reproducible biphasic insulin secretion response which mimicked glucose-sensitive secretion. However, phosphorylation of an 80 kD protein substrate of protein kinase C was not increased when intact islets were incubated with arachidonic acid, suggesting that the small increases in insulin secretion seen with arachidonic acid were not mediated by protein kinase C. These data suggest that arachidonic acid generated by exposure of islets to glucose may influence insulin secretion by inhibiting the activity of calmodulin-dependent protein kinase but probably has little effect on protein kinase C activity.  相似文献   

19.
Polymorphism phenomenon of melt-crystallized poly(butylene adipate) (PBA) has been studied by wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). It has been found that the isothermal crystallization leads to the formation of PBA polymorphic crystals, simply by changing the crystallization temperature. The PBA alpha crystal, beta crystal, and the mixture of two crystal forms grow at the crystallization temperatures above 32 degrees C, below 27 degrees C, and between these two temperatures, respectively. The relationship between PBA polymorphism and melting behaviors has been analyzed by the assignments of multiple melting peaks. Accordingly, the equilibrium melting temperatures Tm degrees of both alpha and beta crystals were determined by Hoffman-Weeks and Gibbs-Thomson equations for the purpose of understanding the structural metastability. The Tm degrees of the PBA alpha crystal was found to be higher than that of the beta crystal, indicating that the PBA alpha crystal form is a structurally stable phase and that the beta crystal form is a metastable phase. The analysis of growth kinetics of PBA polymorphic crystals indicates that the metastable PBA beta crystal is indeed the kinetically preferential result. Based on the thermal and kinetic results, the phenomenon of stability inversion with crystal size in melt-crystallized PBA was recognized, in terms of the growth mechanisms of PBA alpha and beta crystals and the transformation of beta to alpha crystals. The PBA beta --> alpha crystal transformation takes place at a sufficiently high annealing temperature, and the transformation has been evident to be a solid-solid-phase transition process accompanied by the thickening of lamellar crystals. The molecular motion of polymer chains in both crystalline and amorphous phases has been discussed to understand the thickening and phase transformation behaviors.  相似文献   

20.
The heterophile antigen (Paul-Bunnell antigen, PBA) of infectious mononucleosis was isolated by extraction of an aqueous suspension of bovine erythrocyte stromata with chloroform-methanol (2:1). The upper aqueous layer contained gangliosides, PBA, and a high-molecular-weight glycoprotein. PBA and gangliosides were separated from the high-molecular-weight glycoprotein by extraction of lyophilized upper layer with chloroform-methanol solvents. Separation of PBA from gangliosides was carried out by chromatography on DEAE-cellulose with chloroform-methanol solvents. PBA appeared to be a minor glycoprotein component of the erythrocyte membrane and had both hydrophobic and hydrophilic properties. It was soluble in either organic or aqueous solvents. On SDS-polyacrylamide gel electrophoresis, it migrated as a single component that stained for protein with Coomassie blue, for carbohydrate with periodic acid-Schiff reagent, and for lipid with oil red 0; it had an apparent molecular weight of 26,000. It was composed of 62% protein with major amino acids: glutamic acid, proline, glycine, isoleucine, leucine, and threonine (158, 116, 98, 90, 85, and 82 residues per 1,000 residues, respectively). Carbohydrate content was 9.2% with major sugar constituents: sialic acid, galactosamine, and galactose. Serologic activity of PBA was destroyed by pronase but not by trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号