首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The parameters of respiration (V3, V4) and phosphorylation (the respiration control, ADP/O) have been studied using lactate as a substrate (obligatory with NAD addition) close by meaning to pyruvate on the liver and heart mitochondrion and homogenates of newborn rats. In 20-days and adult rats the mitochondria and homogenates oxidize the lactate (with NAD) with higher rate V4 but with lower value of respiration control as compared with the newborn animals. Simultaneously, a high activity of mitochondrial NADH-oxidase, oxidizing NADH, formed in the reaction of lactate dehydrogenase not connected with ATP synthesis. The role of mitochondrial NADH-oxidase are discussed as a factor increasing lactate oxidation, removing tissue lactate and activating the age dependent energy metabolism.  相似文献   

3.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

4.
目的:观察一次性力竭运动后大鼠脑、心、骨骼肌组织和线粒体中PHB1含量的变化及对大鼠线粒体功能的影响,探寻PHB1与线粒体功能和能量代谢的关系。方法:健康雄性SD大鼠40只,随机分为2组(n=20):对照组和一次性力竭运动组,大鼠进行一次性急性跑台运动建立力竭运动模型。收集各组大鼠的心、脑和骨骼肌组织样品并提取线粒体,检测其呼吸功能和ROS的变化。用Western blot方法检测组织和线粒体中PHB1蛋白表达水平;用分光光度计检测各器官中ATP含量以及线粒体中复合体V活性(ATP合酶活性)。结果:①一次性力竭运动后脑、心肌、骨骼肌中ATP含量显著性降低;②一次性力竭运动后脑、心肌、骨骼肌线粒体中复合体V活性、RCR、ROS显著性降低,ST4均显著性升高,ST3无显著性差异。③一次性力竭运动后心、脑、骨骼肌线粒体中PHB1的表达显著性减少。④通过相关性分析得出:一次性力竭运动后心、脑、骨骼肌中ATP含量与心、脑、骨骼肌中复合体V活性呈正相关;心、脑、骨骼肌中ATP含量和心、脑骨骼肌中PHB1的表达呈正相关。结论:一次性力竭运动后,降低线粒体氧化磷酸化功能,使大鼠脑、骨骼肌线粒体内ROS生成增加,PHB1的表达、ATP含量和复合体V活性均下降。一次性力竭运动使得大鼠线粒体内PHB1表达降低,线粒体功能减弱,机体能量代谢降低。  相似文献   

5.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

6.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

7.
In order to measure the parameters of oxidative phosphorylation it is necessary to isolate physiologically intact mitochondria. The isolation of rat liver mitochondria by rate zonal centrifugation utilizing isoosmotic Ficoll gradients resulted in the uncoupling of oxidative phosphorylation in these organelles. Analysis of the Ficoll solutions used to construct the gradients indicated that the Ca2+ content (200–400 nmole Ca2+/mg protein) was sufficiently high to cause an uncoupling of oxidative phosphorylation. Treatment of the Ficoll solutions with Amberlite MB-3 resin reduced the Ca2+ content to levels below the limit of determination of the assay procedure. This resulted in the retention of respiratory control (1.42) in rate-zonally centrifuged mitochondria. The addition of bovine serum albumin (100 mg%) to the Ficoll gradients increased the respiratory control index to 2.10. The increase is due to an elevation in state 3 respiration rather than any change in state 4 respiration. The addition of 200 mg% bovine serum albumin to the Ficoll gradient did not further enhance the respiratory control index.Examination of subpopulations of rat liver mitochondria revealed that they are heterogeneous with regard to states 3 and 4 respiration, respiratory control indices, and ADP:O ratios. In mitochondrial subpopulations respiratory control indices ranged from 1.00 to 4.13 and ADP:O ratios ranged from 1.22 to 1.83. This investigation defined a procedure for the isolation of physiologically intact mitochondria from rat liver homogenates.  相似文献   

8.
After irradiation of rats with a linear electron accelerator, the respiratory rate in rat brain mitochondria was studied in the presence of substrate + ADP and after the conversion of ADP → ATP. After 20,000 rads of irradiation to the head there was a transient diminution of mitochondrial respiratory control when glutamate was used as the substrate, but no changes were observed when succinate was the substrate. Irradiation with 10,000 rads had no effect upon respiratory control. The addition of NADH2 to irradiated mitochondria had no effect upon mitochondrial respiration. Irradiation of the brain with 20,000 rads failed to produce mitochondrial peroxidation or swelling, even in the presence of FeNH4(SO4)2 or ascorbate. The slight changes in respiratory control of brain mitochondria following irradiation is in marked contrast to the susceptibility of mitochondria from other organs. The comparative radioresistance of brain mitochondria may be the result of greatly diminished radiation-induced peroxidation of cerebral mitochondrial membranes.  相似文献   

9.
A new method was devised for the isolation of foetal and neonatal rat lvier mitochondria, giving higher yields than conventional methods. 2. During development from the perinatal period to the mature adult, the ratio of cytochrome oxidase/succinate-cytochrome c reductase changes. 3. The inner mitochondrial membrane of foetal liver mitochondria possesses virtually no osmotic activity; the permeability to sucrose decreases with increasing developmental age. 4. Foetal rat liver mitochondria possess only marginal respiratory control and do not maintain Ca2+-induced respiration; they also swell in respiratory-control medium in the absence of substrate. ATP enhances respiratory control and prevents swelling, adenylyl imidodiphosphate, ATP+atractyloside enhance the R.C.I. (respiratory control index), Ca2+-induced respiratory control and prevent swelling, whereas GTP and low concentrations of ADP have none of these actions. It is concluded that the effect of ATP depends on steric interaction with the inner mitochondrial membrane. 5. When 1-day pre-partum foetuses are obtained by Caesarean section and maintained in a Humidicrib for 90 min, mitochondrial maturation is "triggered", so that their R.C.I. is enhanced and no ATP is required to support Ca2+-dependent respiratory control or to inhibit mitochondrial swelling. 6. It is concluded that foetal rat liver mitochondria in utero do not respire, although they are capable of oxidative phosphorylation in spite of their low R.C.I. The different environmental conditions which the neonatal rat encounters ex utero enable the hepatic mitochondria to produce ATP, which interacts with the inner mitochondrial membrane to enhance oxidative phosphorylation by an autocatalytic mechanism.  相似文献   

10.
"Respiratory control", a typical feature of well coupled mitochondria, was found to be higher in rat brain homogenate than in isolated mitochondria. This observation points to the possibility of studying the coupling between respiration and ADP phosphorylation, as well as mitochondrial metabolism, directly in homogenates and not in isolated mitochondria, using very small samples of brain tissue.  相似文献   

11.
Interactions between intramitochondrial ATP-generating, ADP-requiring processes and ATP-requiring, ADP-generating phosphorylation of glucose by mitochondrially bound hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) have been investigated using well-coupled mitochondria isolated from rat brain. ADP generated by mitochondrially bound hexokinase was more effective at stimulating respiration than was ADP generated by hexokinase dissociated from the mitochondria, and pyruvate kinase was less effective as a scavenger of ADP generated by the mitochondrially bound hexokinase than was the case with ADP generated by the dissociated enzyme. These results indicate that ADP generated by the mitochondrially bound enzyme is at least partially sequestered and directed toward the mitochondrial oxidative phosphorylation apparatus. Under the conditions of these experiments, the maximum rate of ATP production by oxidative phosphorylation was approximately 10-fold greater than the maximum rate of ATP generation by the adenylate kinase reaction. Moreover, during periods of active oxidative phosphorylation, adenylate kinase made no detectable contribution to ATP production. Thus, adenylate kinase does not represent a major source of ATP for hexokinase bound to actively phosphorylating brain mitochondria. With adenylate kinase as the sole source of ATP, a steady state was attained in which ATP formation was balanced by utilization in the hexokinase reaction. In contrast, when oxidative phosphorylation was the source of ATP, a steady state rate of Glc phosphorylation was attained, but it was equivalent to only about 40-50% of the rate of ATP production and thus there was a continued net increase in ATP concentration in the system. Rates of Glc phosphorylation with ATP generated by oxidative phosphorylation exceeded those seen with equivalent levels of exogenously added ATP. Moreover, at total ATP concentrations greater than approximately 0.2 mM, hexokinase bound to actively phosphorylating mitochondria was unresponsive to continued slow increases in ATP levels; acute increase in ATP (by addition of exogenous nucleotide) did, however, result in increased hexokinase activity. The relative insensitivity of mitochondrially bound hexokinase to extramitochondrial ATP suggested dependence on an intramitochondrial pool (or pools) of ATP during active oxidative phosphorylation. Two intramitochondrial compartments of ATP were identified based on their selective release by inhibitors of electron transport or oxidative phosphorylation. These compartments were distinguished by their sensitivity to inhibitors and the kinetics with which they were filled with ATP generated by oxidative phosphorylation. Exogenous glycerol kinase competed effectively with mitochondrially bound hexokinase for extramitochondrial ATP, with relatively low levels of glycerol kinase completely inhibiting phosphorylation of Glc.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD(+) status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.  相似文献   

13.
The effect of the divalent cationic cyanine dye tri-S-C4(5) on oxidative phosphorylation in rat liver mitochondria was examined. The dye at about 100 n mols per mg mitochondrial protein inhibited state 3 respiration and ATP synthesis almost completely. However, it had no effect on submitochondrial particles, like other hydrophobic cations. The dye inhibited the transport of ADP into mitochondria mediated by the adenine nucleotide translocator. Thus, the inhibition of oxidative phosphorylation by the cationic dye was concluded to be due to its action on the adenine nucleotide translocator, not to its electrophoretic transfer into the inner space of mitochondria according to the inside-negative electrochemical potential.  相似文献   

14.
We studied the effects and mode of action of epinephrine on the oxidative phosphorylation of rat liver mitochondria. With either succinate or beta-hydroxybutyrate as substrate, i.v. injection of 1.5 microgram/100 g epinephrine increased the respiratory rates by 30-40% in state 3 (with ADP), and by 20-30% in state 4 (after ADP phosphorylation), so that the respiratory control ratio (state 3/state 4) changed little. The respiratory stimulation by epinephrine was maximal 20 minutes after its injection. The action of epinephrine on mitochondria was blocked by pretreatment of the animals with the alpha 1-antagonist prazosin but not by treatment with the beta-antagonist propranolol. I. v. injection of 10 micrograms/100 g phenylephrine evoked the same mitochondrial response as epinephrine. I. v. administration of 50 micrograms/100 g dibutyryl cyclic AMP enhanced glycaemia but did not affect mitochondrial respiration. Epinephrine therefore has an alpha 1-type of action on mitochondrial oxidative phosphorylation.  相似文献   

15.
The effect of ethanol intake on liver mitochondrial functions was investigated by feeding rats with a liquid isocaloric diet containing various concentrations of ethanol. We found that after feeding the liquid diet for 2 to 3 months, the body weight of rats did not show a significant difference between treated and control groups. However, the mitochondrial respiration rate decreased significantly with the increase of ethanol concentration in the diet. We found that when the rats were fed on 10.8% ethanol, the average succinate-supported State 3 respiration rate decreased from 54.5 to 44.8 nmol O2/min/mg and the glutamate-malate-supported State 3 respiration rate decreased from 38.8 to 23.6 nmol O2/min/mg as compared with the control. Interestingly, we noted that ethanol intake caused a more drastic effect on State 3 respiration than on State 4 respiration, irrespective of the substrate utilized by the mitochondria. In addition, the respiratory control and ADP/O ratios were found to decrease concomitantly with the increase of ethanol level in the diet. Moreover, we found that the effect of ethanol on both respiratory control and ADP/O ratios of liver mitochondria was more pronounced in glutamate-malate-supported respiration than succinate-supported respiration. These results clearly demonstrate that ethanol intake by the rat can cause impairment of liver mitochondrial respiration and oxidative phosphorylation, and that these effects are exerted through damage to mitochondrial membranes.  相似文献   

16.
The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.  相似文献   

17.
The coupled reactions of electron transport and ATP synthesis for the first two sites of mitochondrial oxidative phosphorylation have been previously reported to be near equilibrium in isolated respiring pigeon heart (Erecińska, M., Veech, R. L., and Wilson, D. F. (1974) Arch. Biochem. Biophys. 160, 412-421) and rat liver mitochondria (Forman, N. G., and Wilson, D. F. (1982) J. Biol. Chem. 257, 12908-12915). Measurements are presented in this paper which demonstrate that the same relationship exists for both forward and reverse electron transport in rat heart mitochondria. This conclusion implies that adenine nucleotide translocation, a partial reaction of the system, is also near equilibrium, contrasting with proposals that the translocase is rate-limiting for oxidative phosphorylation. To resolve this controversy, the respiratory rates of suspensions of isolated rat liver and rat heart mitochondria were controlled by varying either the added [ATP]/[ADP][Pi] ratios ratios or [ADP] (by varying hexokinase in a regenerating system). Titrations with carboxyatractyloside, a high affinity inhibitor of the translocase which is noncompetitive with ADP, were carried out to assess the dependence of the respiratory rate on translocase activity. Plots of respiratory rate versus [carboxyatractyloside] were all strongly sigmoidal. In liver mitochondria, 40%-70% and in heart mitochondria 66% of the sites could be blocked with carboxyatractyloside before a 10% decrease in the respiratory rate was observed. Further analysis showed that liver and heart mitochondria have translocase/cytochrome a ratios of 1.52 and 3.20, respectively, and that at 23 degrees C the maximal turnover numbers for the translocases were 65 s-1 and 23 s-1. In all states of controlled respiration (no added inhibitor), a substantial excess of translocase activity was present, suggesting that the translocase was not normally rate-limiting in oxidative phosphorylation.  相似文献   

18.
In rat liver mitochondria all nucleoside diphosphate kinase of the outer compartment is associated with the outer surface of the outer membrane (Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136-1144). In the present study, three systems operating as ADP donors for oxidative phosphorylation have been investigated. The outer membrane bound nucleoside diphosphate kinase was the first system tested. Two others employed yeast hexokinase and yeast nucleoside diphosphate kinase. The two enzymes exhibited the same activity but could not bind to mitochondrial membranes. In all three systems, muscle creatine phosphokinase was the external agent competing with the oxidative phosphorylation system for ADP. Determination of mitochondrial respiration rate in the presence of increasing quantities of creatine phosphokinase revealed that at large excess of creatine phosphokinase activity over other kinase activities (of the three systems tested) and oxidative phosphorylation the creatine phosphokinase reaction reached a quasi-equilibrium state. Under these conditions equilibrium concentrations of all creatine phosphokinase substrates were determined and K(eq)app of this reaction was calculated for the system with yeast hexokinase. In samples containing active mitochondrial nucleoside diphosphate kinase the concentrations of ATP, creatine, and phosphocreatine were determined and the quasi-equilibrium concentration of ADP was calculated using the K(eq)app value. At balance of quasi-equilibrium concentrations of ADP and ATP/ADP ratio the mitochondrial respiration rate in the system containing nucleoside diphosphate kinase was 21% of the respiration rate assayed in the absence of creatine phosphokinase; in the system containing yeast hexokinase this parameter was only 7% of the respiration rate assayed in the absence of creatine phosphokinase. Substitution of mitochondrial nucleoside diphosphate kinase with yeast nucleoside diphosphate kinase abolished this difference. It is concluded that oxidative phosphorylation is accompanied by appearance of functional coupling between mitochondrial nucleoside diphosphate kinase and the oxidative phosphorylation system. Possible mechanisms of this coupling are discussed.  相似文献   

19.
Malate was studied for its effect on the oxidative phosphorylation rate in the rat brain mitochondria in the presence and absence of ATP, succinate being used as a substrate of the respiration. It has been found that malate in the 0.05-0.4 mM concentration range increases the oxidation phosphorylation rate. ATP inhibiting oxidative phosphorylation intensifies the malate stimulation. The malate 0.8 mM concentration removes the inhibiting action of ATP. The regulatory effects of malate and ATP are supposed to be realized at the adenine nucleotide translocator step.  相似文献   

20.
Cerebrosides and psychosine disrupt mitochondrial functions   总被引:2,自引:0,他引:2  
Glucocerebroside and galactocerebroside increased the respiratory rate of liver and brain mitochondria by 33-400% and produced an average 30% decrease in oxidative phosphorylation. Psychosine stimulated mitochondrial respiration 66-700%. At concentrations over 100 micrograms/mg mitochondrial protein, oxidative phosphorylation was completely inhibited. Atractyloside did not prevent the respiratory stimulation. Ca2+ transport was blocked and addition of ATP could not overcome this inhibition. The possible deleterious effect of glycosphingolipids on the conformation of the mitochondrial membrane and cellular bioenergetics is discussed in relation to the toxicity of accumulating glycosphingolipids in Gaucher and Krabbe diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号