首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM-based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type-A CBMs from families 3a and 64 with crystalline cellulose-I and phosphoric acid swollen cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose-I using equilibrium binding assays. To compute the adsorption (nkon) and desorption (koff) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide-field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.  相似文献   

2.
The response by rice protoplasts to N-acetylchitooligosaccharide elicitor was examined by monitoring the production of reactive oxygen species (ROS), and the expression of the two early-responsive genes, EL2 and EL3. Freshly prepared rice protoplasts produced a high level of ROS in the absence of the elicitor, and did not show further increase of the ROS generation in response to N-acetylchitooligosaccharide elicitor. By incubating protoplasts for 1 d, the background level decreased and the induction of ROS production and the induction of mRNAs for the two genes were observed. The structural requirements of N-acetylchitooligosaccharides for elicitor-activity, as well as the effects of inhibitors of protein kinase (K-252a), protein phosphatase (calyculin A) and protein synthesis (cycloheximide) on the ROS production and gene expression were very similar to those observed in suspension-cultured rice cells, indicating that rice protoplasts retain the machinery for the recognition of, and initial signaling from, N-acetylchitooligosaccharide elicitor.  相似文献   

3.
We have recently reported the isolation and characterization of a glycoprotein (Mr 67 000) from germ-tube walls of Puccinia graminis f. sp. tritici which elicits the cellular hypersensitive lignification response in wheat (G. Kogel et al., 1988, Physiol. Mol. Plant Pathol. 33, 173–185). The present study uses this glycoprotein, referred to as Pgt elicitor, to identify putative elicitor targets in wheat cell membranes. In enzyme-linked immunosorbent assays using anti-Pgt elicitor antibodies, specific binding sites for Pgt elicitor were detected in highly purified plasma-membrane vesicles of wheat (Triticum aestivum L.) primary leaf cells. Binding proved to be independent of the presence or absence in wheat of the Sr5 gene for rust resistance, and also occurred on barley (Hordeum vulgare L.) plasma membrane. The binding sites have an Mr of 30 000 and 33 000, respectively, and binding activity was not lost in the presence of sodium dodecyl sulfate. [14C]imido-Pgt elicitor was used to determine the apparent K d value for specific binding, found to be 2.0 M, and the maximum content of binding sites, found to be 250 pmol per mg of plasma-membrane protein. The relevance of the elicitor binding for the outcome of the interaction of P. graminis and wheat is discussed.Abbreviations BSA bovine serum albumin - ELISA enzyme linked immunosorbent assay - IDPase inosine 5-diphosphatase - MPLC medium-pressure liquid chromatography - MF microsomal fraction - Pgt elicitor elicitor of Puccinia graminis f. sp. tritici - SDS sodium dodecyl sulfate - Pre U3, Pre U1 pure plasma membrane from wheat cultivar Prelude and plasma membrane contaminated by intracellular membrane, respectively This work was supported by the Deutsche Forschungsgemeinschaft. We wish to thank C. Larsson, Lund, Sweden for his kind support in the preparation of plasma membrane.  相似文献   

4.
We are studying the cellular signaling pathway leading to pterocarpan phytoalexin biosynthesis in soybean that is induced by a branched hepta-β-glucoside originally isolated from the mycelial walls of the phytopathogenic oomycete Phytophthora sojae. Our research has focused on the specific recognition of the hepta-β-glucoside elicitor by binding proteins in soybean cells. Elicitor-binding proteins with properties expected of physiological receptors for the hepta-β-glucoside elicitor have been identified in soybean root membranes. These elicitor-binding proteins co-migrate with a plasma membrane marker (vanadate-sensitive H+-ATPase) on linear sucrose density gradients. Binding of a radio-iodinated derivative of the hepta-β-glucoside elicitor by membrane-localized elicitor-binding proteins is specific, reversible, saturable, and of high affinity (Kd? 1 nM). After solubilization with the nonionic detergent, n-dodecylsucrose, the elicitor-binding proteins retain their high affinity (Kd= 1.8 nM) for the radiolabeled elicitor and their binding specificity for elicitor-active oligoglucosides. A direct correlation is observed between the ability of oligoglucosides to displace labeled elicitor from the elicitor-binding proteins and the elicitor activity of the oligosaccharides. Thus, the elicitor-binding proteins recognize the same structural elements of the hepta-β-glucoside elicitor that are essential for its phytoalexin-inducing activity, suggesting that the binding proteins are physiological receptors for the elicitor. Current research is directed toward the purification of the hepta-β-glucoside elicitor-binding proteins by using ligand affinity chromatography. Purification and characterization of the hepta-β-glucoside binding proteins are among the first steps toward elucidating how the hepta-β-glucoside elicitor triggers the signal transduction pathway that ultimately leads to the synthesis of phytoalexins in soybean.  相似文献   

5.
Fruit crops are regarded as important health promoters and constitute a major part of global agricultural production, and Rosaceae species are of high economic impact. Their culture is threatened by bacterial diseases, whose control is based on preventative treatments using compounds of limited efficacy and negative environmental impact. One of the most economically relevant examples is the pathogen Xanthomonas arboricola pv. pruni (Xap) affecting Prunus spp. The plant immune response against pathogens can be triggered and amplified by plant elicitor peptides (Peps), perceived by specific receptors (PEPRs). Although they have been described in various angiosperms, scarce information is available on Rosaceae species. Here, we identified the Pep precursor (PROPEP), Pep and PEPR orthologues of 10 Rosaceae species and confirmed the presence of the Pep/PEPR system in this family. We showed the perception and elicitor activity of Rosaceae Peps using the Prunus–Xap pathosystem as proof‐of‐concept. Treatment with nanomolar doses of Peps induced the corresponding PROPEP and a set of defence‐related genes in Prunus leaves, and enhanced resistance against Xap. Peps from the same species had the highest efficiencies. Rosaceae Peps could potentially be used to develop natural, targeted and environmentally friendly strategies to enhance the resistance of Prunus species against biotic attackers.  相似文献   

6.
J. Burgess  P. J. Linstead 《Planta》1976,130(1):73-79
Summary The binding of concanavalin A to the plasmalemma of higher plants has been studied using protoplasts of two species. The lectin aggregates both tobacco (Nicotiana tabacum L.) leaf protoplasts and protoplasts prepared from a suspension cell culture of grapevine (Vitis vinifera L.). Differences in lectin binding have been investigated using concanavalin A conjugated to ferritin or bound to colloidal gold. Tobacco protoplasts exhibit continuous and saturated labelling of the plasmalemma surface with gold-concanavalin A mixtures. Vine protoplasts under the same conditions show a discontinuous and patchy distribution of label. These results are discussed in terms of a possible binding mechanism.Abbreviations ConA concanavalin A - PBS Phospholi Buffered Saline - PEG polyethylene glycol  相似文献   

7.
Distribution of alginate oligomers (AO) which are endogenous elicitor-like substances, in cultured plant cells were investigated by using AO conjugated with monopotassium 7-amino-1,3-naphthalenedisulfonate (ANDS). When AO-ANDS was added at 0.5 g l–1 to the Catharanthus roseus cell culture, it adhered to the cells as observed by fluorescence microscopy. Using protoplasts of C. roseus, AO-ANDS was found not only in the cell walls but also in the cell membrane and cytoplasm. When C. roseus was cultivated in a medium containing oligo-galacturonic acids, as an endogenous elicitor, this was also found in the cell wall, cell membrane and cytoplasm of C. roseus cells. Similar results were also obtained with Wasabia japonica cells.  相似文献   

8.
Summary An improved method for the mechanical release of protoplasts from plant tissues is described. The historically-low yield of mechanically-released protoplasts is greatly increased by use of a simple electrically-driven tissue sheer and by optimization of various other steps in the procedure. As counted by light microscopy of a purified preparation, the number of mechanically-released protoplasts obtained is about 6×104 per gram fresh weight of cortical tissue from the primary root of maize (Zea mays L. WF9×Mo 17) seedlings. Nuclear staining of the preparation, however, shows that about half of these protoplasts lack a nucleus and thus are actually subprotoplasts. Comparison of lectin binding to the plasma membranes of mechanically-and enzymatically-released protoplasts shows that both types contain binding sites forRicinus communis agglutinin. Binding sites for peanut (Arachis hypogaea) agglutinin are not naturally present on mechanically-released protoplasts but are generated by exposure to a mixture of Cellulysin and Pectolyase Y-23, the cell wall-degrading enzymes used to prepare enzymatically-released protoplasts.Abbreviations BSA bovine serum albumin - DDT dithiothreitol - gfw gram fresh weight - Mes 2-(N-morpholino) ethanesulfonic acid - PNA peanut (Arachis hypogaea) agglutinin - RCA Ricinus communis agglutinin - Tris tris(hydroxymethyl)aminomethane  相似文献   

9.
Summary Conditional-lethal, temperature-sensitive plant mutants have been isolated using a simple protoplast cloning method. The leaf protoplasts used were obtained from sterile, haploid shoot cultures of Nicotiana plumbaginifolia. Recessive mutations are described at three loci: ts1, ts2 and ts3. The mutations are lethal when either tissue cultures or plants are incubated at 33°C but not at 26°C.  相似文献   

10.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

11.
The nuclear genome composition of five asymmetric somatic hybrids, obtained by fusion of leaf protoplasts from Solanum tuberosum and gamma-irradiated leaf protoplasts from S. brevidens, have been analyzed at the molecular level. An analysis of 21 loci using linkage group-specific restriction fragment length polymorphism (RFLP) was included in the study. All five hybrids contained a complete set of the loci studied from S. tuberosum. The degree of elimination of alleles from the irradiated S. brevidens donor genome ranged from 10–65% in the five asymmetric hybrids analyzed. The detection of incomplete chromosomes, as well as non-parental bands in Southern hybridizations with RFLP markers, revealed extensive chromosome rearrangements in the asymmetric hybrids.  相似文献   

12.
Different components of a crude cell-wall preparation from the phytopathogenic fungus, Phytophthora megasperma f. sp. glycinea, act as elicitors of phytoalexin accumulation in parsley (Petroselinum crispum) and soybean (Glycine max). Treatments of cultured parsley cells and protoplasts or soybean cells and cotyledons with proteinase-digested or deglycosylated elicitor preparations identify proteinaceous constituents as active eliciting compounds in parsley, which are inactive in soybean. The proteinase-treated elicitor as well as a defined heptaglucan are active in soybean but do not stimulate phytoalexin synthesis in parsley. Soybean and parsley cells therefore not only perceive different signals from cell walls of Phytophthora megasperma f. sp. glycinea, but are unable to respond to the fungal compounds primarily recognized by the other plant.Abbreviations Pmg Phytophthora megasperma f. sp. glycinea  相似文献   

13.
14.
Côté F  Roberts KA  Hahn MG 《Planta》2000,211(4):596-605
 Previous studies have led to the identification and characterization of specific, high-affinity binding sites for a hepta-β-glucoside elicitor in soybean. A survey of plant species for elicitor-binding activity reveals that among the plants tested, the hepta-β-glucoside elicitor is only recognized by plants belonging to the legume family. We have characterized in detail the glucan elicitor-binding site in the model legume Medicago truncatula Gaertn., and partially characterized the site in Lotus japonicus. These sites have characteristics that are very similar to the one in soybean, with dissociation constants of 4.7 and 8.9 nM respectively. The elicitor-binding sites from both plants are stable during solubilization with non-ionic alkylglycoside detergents. However, differences are observed in the abundance of the binding sites and their selectivity towards structurally related analogues of the hepta-β-glucoside elicitor. Our results suggest that similar, but perhaps not identical, binding sites for the hepta-β-glucoside elicitor exist in diverse legumes, but not in plants outside of the legume family. Received: 15 December 1999 / Accepted: 28 February 2000  相似文献   

15.
16.
Prolamine proteolysis is assumed to be among numerous adaptability factors in cereals. The patterns of gliadin proteolysis have been studied in 16 cultivars of spring wheat via analysis of electrophoretic spectra. Four proteolytic patterns have been identified. It is hypothesized that the cultivars characterized by early and rapid proteolysis (the first and third types) are the most adaptable. The gliadin genetic formulas of chromosomes of the first homeologous group have been determined. The alleles of gliadin loci (Gli-A1f, Gli-B1e, Gli-D1a, and Gli-D1b) have been found that can be used as markers of adaptability in spring wheat cultivars.  相似文献   

17.
Field emission scanning electron microscopy (FESEM) preparation techniques have been successfully adapted for visualization of the internal and external ultrastructure of Mougeotia filaments and protoplasts. FESEM of the innermost layer of cell wall in Mougeotia filaments revealed that microfibrils are deposited parallel to each other in an interconnected mesh and are oriented perpendicular to the direction of elongation. For the first time, the surface of protoplasts at different stages of regeneration has been observed using FESEM. Nascent microfibril deposition occurs between 1 and 2 h after isolation and arrangement of these microfibrils is random for at least 8 h. Observation of the inner surface of the plasma membrane in burst protoplasts showed that microtubules are not strongly attached for at least 3 h after protoplast isolation.  相似文献   

18.
Ribulose bisphosphate carboxylase (Rubisco) has been found in Vicia faba L. guard cell chloroplasts by two immunological methods, using antibodies raised against highly purified subunits of ribulose bisphosphate carboxylase. Indirect cytoimmunofluorescence revealed binding of antibodies against both the small and the large subunits of ribulose bisphosphate carboxylase. Binding was observed only after partial digestion of guard cell walls by 4% Cellulysin to facilitate antibody penetration. After electrophoresis of a homogenate of guard cell protoplasts, the presence of both subunits was also revealed by immunolabeling technique. Positive response required the inhibition of proteolysis which appeared to be active upon homogenization.  相似文献   

19.
Two purified oligosaccharide elicitors generatable from fungal cell walls, N-acetylchitoheptaose and a tetraglucosyl glucitol from rice blast fungus (Magnaporthe grisea), synergistically activated phytoalexin biosynthesis in cultured rice cells. Inhibition experiments for the binding of radiolabeled N-acetylchitooligosaccharide elicitor to the plasma membrane from rice cells indicate that the two elicitors are recognized by different receptors. These results also indicate the presence of a positive interaction between the signal transduction cascade downstream of each elicitor/receptor, which enhances resistance against pathogens.  相似文献   

20.
A chimeric gene consisting of a bean (Phaseolus vulgaris L.) chalcone synthase (CHS) promoter fused to a bacterial chloramphenicol acetyltransferase (CAT) reporter gene was strongly expressed, and further induced by fungal elicitor, when electroporated into alfalfa (Medicago sativa L.) suspension cell protoplasts. Functional analysis of 5 deletions of the CHS promoter-CAT construct in these protoplasts indicated that the region between –326 and –130 contained both activator and silencer elements. Co-electroporation experiments confirmed that these cis-acting elements were binding sites for functionally active trans factors. In vitro DNase I footprinting revealed four potential binding sites for alfalfa suspension cell nuclear proteins between positions –326 and –130 of the CHS promoter. These sites mapped to regions shown to contain functional cis-acting elements on the basis of the deletion analysis. Three of these sites mapped to previously identified binding sites for bean nuclear proteins. Competition gel retardation analysis using oligonucleotide probes containing binding site sequences revealed sequence-specific binding of alfalfa nuclear proteins to an AT-rich element and a putative GT-1 factor consensus binding sequence. Our results define cis elements and their cognate trans factors functionally active in determining the quantitative expression of a defense response gene in a heterologous transient expression system.Abbreviations CAT chloramphenicol acetyltransferase - CHS chalcone synthase (EC 2.3.1.74) - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号