首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To delineate the molecular mechanism underlying the inverse agonist activity of olmesartan, a potent angiotensin II type 1 (AT1) receptor antagonist, we performed binding affinity studies and an inositol phosphate production assay. Binding affinity of olmesartan and its related compounds to wild-type and mutant AT1 receptors demonstrated that interactions between olmesartan and Tyr113, Lys199, His256, and Gln257 in the AT1 receptor were important. The inositol phosphate production assay of olmesartan and related compounds using mutant receptors indicated that the inverse agonist activity required two interactions, that between the hydroxyl group of olmesartan and Tyr113 in the receptor and that between the carboxyl group of olmesartan and Lys199 and His256 in the receptor. Gln257 was found to be important for the interaction with olmesartan but not for the inverse agonist activity. Based on these results, we constructed a model for the interaction between olmesartan and the AT1 receptor. Although the activation of G protein-coupled receptors is initiated by anti-clockwise rotation of transmembrane (TM) III and TM VI followed by changes in the conformation of the receptor, in this model, cooperative interactions between the hydroxyl group and Tyr113 in TM III and between the carboxyl group and His256 in TM VI were essential for the potent inverse agonist activity of olmesartan. We speculate that the specific interaction of olmesartan with these two TMs is essential for stabilizing the AT1 receptor in an inactive conformation. A better understanding of the molecular mechanisms of the inverse agonism could be useful for the development of new G protein-coupled receptor antagonists with inverse agonist activity.  相似文献   

2.
Agonist-induced rigid body motion of transmembrane (TM) helices has been established as a unifying mechanism in the activation of the G protein-coupled receptors. In attempts to measure specific conformational transitions during the activation of the type 1 receptor for angiotensin II (AT(1)), we found a decrease in accessibility of Cys(76) in the second TM helix, suggesting that the orientation of TM2 is altered (Miura, S., and Karnik, S. S. (2002) J. Biol. Chem. 277, 24299-24305). Now we provide evidence that the TM2 helical movement plays a role in regulating the activated state of the AT(1) receptor, and this role may involve an interaction between TM2 and TM7. Alanine substitution of native Cys(296) in TM7 leads to increased accessibility of Cys(289) and diminished response to bound agonist. Both effects of the C296A mutation are suppressed when combined with F77A and N111G mutants. The TM7 conformation and the sensitivity of Cys(289) altered by C296A mutation are suppressed by the F77A mutation in TM2 to salvage function. We show that the F77A mutant alters orientation of both TM2 and TM7 but does not induce constitutive activity in suppressing the C296A mutant effects. Thus, interaction of TM2 and TM7 is important for transmembrane signal transduction in the AT(1) receptor.  相似文献   

3.
The angiotensin II type 1 (AT1) receptor has a crucial role in load-induced cardiac hypertrophy. Here we show that the AT1 receptor can be activated by mechanical stress through an angiotensin-II-independent mechanism. Without the involvement of angiotensin II, mechanical stress not only activates extracellular-signal-regulated kinases and increases phosphoinositide production in vitro, but also induces cardiac hypertrophy in vivo. Mechanical stretch induces association of the AT1 receptor with Janus kinase 2, and translocation of G proteins into the cytosol. All of these events are inhibited by the AT1 receptor blocker candesartan. Thus, mechanical stress activates AT1 receptor independently of angiotensin II, and this activation can be inhibited by an inverse agonist of the AT1 receptor.  相似文献   

4.
Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT(1) receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ).  相似文献   

5.
The topology of the second extracellular loop (ECL2) and its interaction with ligands is unique in each G protein-coupled receptor. When the orthosteric ligand pocket located in the transmembrane (TM) domain is occupied, ligand-specific conformational changes occur in the ECL2. In more than 90% of G protein-coupled receptors, ECL2 is tethered to the third TM helix via a disulfide bond. Therefore, understanding the extent to which the TM domain and ECL2 conformations are coupled is useful. To investigate this, we examined conformational changes in ECL2 of the angiotensin II type 1 receptor (AT1R) by introducing mutations in distant sites that alter the activation state equilibrium of the AT1R. Differential accessibility of reporter cysteines introduced at four conformation-sensitive sites in ECL2 of these mutants was measured. Binding of the agonist angiotensin II (AngII) and inverse agonist losartan in wild-type AT1R changed the accessibility of reporter cysteines, and the pattern was consistent with ligand-specific “lid” conformations of ECL2. Without agonist stimulation, the ECL2 in the gain of function mutant N111G assumed a lid conformation similar to AngII-bound wild-type AT1R. In the presence of inverse agonists, the conformation of ECL2 in the N111G mutant was similar to the inactive state of wild-type AT1R. In contrast, AngII did not induce a lid conformation in ECL2 in the loss of function D281A mutant, which is consistent with the reduced AngII binding affinity in this mutant. However, a lid conformation was induced by [Sar1,Gln2,Ile8] AngII, a specific analog that binds to the D281A mutant with better affinity than AngII. These results provide evidence for the emerging paradigm of domain coupling facilitated by long range interactions at distant sites on the same receptor.  相似文献   

6.
Despite the central physiological function of the myogenic response, the underlying signalling pathways and the identity of mechanosensors in vascular smooth muscle (VSM) are still elusive. In contrast to present thinking, we show that membrane stretch does not primarily gate mechanosensitive transient receptor potential (TRP) ion channels, but leads to agonist-independent activation of G(q/11)-coupled receptors, which subsequently signal to TRPC channels in a G protein- and phospholipase C-dependent manner. Mechanically activated receptors adopt an active conformation, allowing for productive G protein coupling and recruitment of beta-arrestin. Agonist-independent receptor activation by mechanical stimuli is blocked by specific antagonists and inverse agonists. Increasing the AT(1) angiotensin II receptor density in mechanically unresponsive rat aortic A7r5 cells resulted in mechanosensitivity. Myogenic tone of cerebral and renal arteries is profoundly diminished by the inverse angiotensin II AT(1) receptor agonist losartan independently of angiotensin II (AII) secretion. This inhibitory effect is enhanced in blood vessels of mice deficient in the regulator of G-protein signalling-2. These findings suggest that G(q/11)-coupled receptors function as sensors of membrane stretch in VSM cells.  相似文献   

7.
Activation of G protein-coupled receptors by agonists involves significant movement of transmembrane domains (TM) following binding of agonist. The underlying structural mechanism by which receptor activation takes place is largely unknown but can be inferred by detecting variability within the environment of the ligand-binding pocket, which constitutes a water-accessible crevice surrounded by the seven TM helices. Using the substituted cysteine accessibility method, we initially identified those residues within the seventh transmembrane domain (TM7) of wild type angiotensin II type 1 (AT1) receptor that contribute to forming the binding site pocket. We have substituted successively TM7 residues ranging from Ile276 to Tyr302 to cysteine. Treatment of A277C, V280C, T282C, A283C, I286C, A291C, and F301C mutant receptors with the charged sulfhydryl-specific alkylating agent MTSEA significantly inhibited ligand binding, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was greatly reduced for TM7 reporter cysteines engineered in a constitutively active mutant of the AT1 receptor. Our data suggest that upon activation, TM7 of the AT1 receptor goes through a pattern of helical movements that results in its distancing from the binding pocket per se. These studies support accumulating evidence whereby elements of TM7 of class A GPCRs promote activation of the receptor through structural rearrangements.  相似文献   

8.
The thyrotropin (TSH) receptor is an interesting model to study G protein-coupled receptor activation as many point mutations can significantly increase its basal activity. Here, we identified a molecular interaction between Asp(633) in transmembrane helix 6 (TM6) and Asn(674) in TM7 of the TSHr that is crucial to maintain the inactive state through conformational constraint of the Asn. We show that these residues are perfectly conserved in the glycohormone receptor family, except in one case, where they are exchanged, suggesting a direct interaction. Molecular modeling of the TSHr, based on the high resolution structure of rhodopsin, strongly favors this hypothesis. Our approach combining site-directed mutagenesis with molecular modeling shows that mutations disrupting this interaction, like the D633A mutation in TM6, lead to high constitutive activation. The strongly activating N674D (TM7) mutation, which in our modeling breaks the TM6-TM7 link, is reverted to wild type-like behavior by an additional D633N mutation (TM6), which would restore this link. Moreover, we show that the Asn of TM7 (conserved in most G protein-coupled receptors) is mandatory for ligand-induced cAMP accumulation, suggesting an active role of this residue in activation. In the TSHr, the conformation of this Asn residue of TM7 would be constrained, in the inactive state, by its Asp partner in TM6.  相似文献   

9.
Water deprivation activates sympathoexcitatory neurons in the paraventricular nucleus (PVN); however, the neurotransmitters that mediate this activation are unknown. To test the hypothesis that ANG II and glutamate are involved, effects on blood pressure (BP) of bilateral PVN microinjections of ANG II type 1 receptor (AT1R) antagonists, candesartan and valsartan, or the ionotropic glutamate receptor antagonist, kynurenate, were determined in urethane-anesthetized water-deprived and water-replete male rats. Because PVN may activate sympathetic neurons via the rostral ventrolateral medulla (RVLM) and because PVN disinhibition increases sympathetic activity in part via increased drive of AT1R in the RVLM, candesartan was also bilaterally microinjected into the RVLM. Total blockade of the PVN with bilateral microinjections of muscimol, a GABA(A) agonist, decreased BP more (P < 0.05) in water-deprived (-29 +/- 8 mmHg) than in water-replete (-7 +/- 2 mmHg) rats, verifying that the PVN is required for BP maintenance during water deprivation. PVN candesartan slowly lowered BP by 7 +/- 1 mmHg (P < 0.05). In water-replete rats, however, candesartan did not alter BP (1 +/- 1 mmHg). Valsartan also produced a slowly developing decrease in arterial pressure (-6 +/- 1 mmHg; P < 0.05) in water-deprived but not in water-replete (-1 +/- 1 mmHg) rats. In water-deprived rats, PVN kynurenate rapidly decreased BP (-19 +/- 3 mmHg), and the response was greater (P < 0.05) than in water-replete rats (-4 +/- 1 mmHg). Finally, as in PVN, candesartan in RVLM slowly decreased BP in water-deprived (-8 +/- 1 mmHg; P < 0.05) but not in water-replete (-3 +/- 1 mmHg) rats. These data suggest that activation of AT(1) and glutamate receptors in PVN, as well as of AT1R in RVLM, contributes to BP maintenance during water deprivation.  相似文献   

10.
We have investigated receptor structural components of the melanocortin-4 receptor (MC4R) responsible for ligand-dependent inverse agonism. We utilized agouti-related protein (AGRP), an inverse agonist which reduces MC4R basal cAMP production, as a tool to determine the molecular mechanism. We tested a series of chimeric receptors and utilized MC4R and MC1R as templates, in which AGRP is an inverse agonist for MC4R but not for MC1R. Our results indicate that replacements of the extracellular loops 1, 2 and 3 of MC4R with the corresponding regions of MC1R did not affect AGRP inverse agonist activity. However, replacement of the N terminus of MC4R with the same region of MC1R decreases AGRP inverse agonism. Replacement of transmembrane domains 3, 4, 5 and 6 of MC4R with the corresponding regions of MC1R did not affect AGRP inverse agonist activity but mutation of D90A in transmembrane 2 (TM2) and D298A in TM7 abolished AGRP inverse activity. Deletion of the distal MC4R C terminus fails to maintain AGRP mediated reduction in basal cAMP production although it maintains NDP-MSH mediated cAMP production. In conclusion, our results indicate that the N terminus and the distal C terminus of MC4R do appear to play important roles in AGRP inverse agonism but not NDP-MSH mediated receptor activation. Our results also indicate that the residues D90 in TM2 and D298 in TM7 of hMC4R are involved in not only NDP-MSH mediated receptor activation but also AGRP mediated inverse agonism.  相似文献   

11.
Li JH  Hamdan FF  Kim SK  Jacobson KA  Zhang X  Han SJ  Wess J 《Biochemistry》2008,47(9):2776-2788
G protein-coupled receptor (GPCR) function can be modulated by different classes of ligands including full and inverse agonists. At present, little is known about the conformational changes that agonist ligands induce in their target GPCRs. In this study, we employed an in situ disulfide cross-linking strategy to monitor ligand-induced structural changes in a series of cysteine (Cys)-substituted mutant M 3 muscarinic acetylcholine receptors. One of our goals was to study whether the cytoplasmic end of transmembrane domain V (TM V), a region known to be critically involved in receptor/G protein coupling, undergoes a major conformational change, similar to the adjacent region of TM VI. Another goal was to determine and compare the disulfide cross-linking patterns observed after treatment of the different mutant receptors with full versus inverse muscarinic agonists. Specifically, we generated 20 double Cys mutant M 3 receptors harboring one Cys substitution within the cytoplasmic end of TM V (L249-I253) and a second one within the cytoplasmic end of TM VI (A489-L492). These receptors were transiently expressed in COS-7 cells and subsequently characterized in pharmacological and disulfide cross-linking studies. Our cross-linking data, in conjunction with a three-dimensional model of the M 3 muscarinic receptor, indicate that M 3 receptor activation does not trigger major structural disturbances within the cytoplasmic segment of TM V, in contrast to the pronounced structural changes predicted to occur at the cytoplasmic end of TM VI. We also demonstrated that full and inverse muscarinic agonists had distinct effects on the efficiency of disulfide bond formation in specific double Cys mutant M 3 receptors. The present study provides novel information about the dynamic changes that accompany M 3 receptor activation and how the receptor conformations induced (or stabilized) by full versus inverse muscarinic agonists differ from each other at the molecular level. Because all class I GPCRs are predicted to share a similar transmembrane topology, the conclusions drawn from the present study should be of broad general relevance.  相似文献   

12.
The aims of this study were to determine the contribution of the AT2 receptor to the antihypertensive and regional vasodilatory effects of AT1 receptor blockade in adult spontaneously hypertensive rats (SHR), 2-kidney, 1-clip hypertensive (2K1C) rats, and sham-operated normotensive rats. Several studies have provided evidence to support the notion that the AT2 receptor may have opposing effects to those mediated by the AT1 receptor. We therefore tested the hypothesis that the depressor and vasodilator effects of acute AT1 receptor blockade are dependent on AT2 receptor activation. Heart rate, mean arterial pressure, and regional hemodynamics were measured over a 4-day protocol in rats that received the following treatments in randomized order: saline vehicle, the AT1 receptor antagonist candesartan (0.1 mg/kg iv bolus), the AT2 receptor antagonist PD-123319 (50 microg.kg(-1).min(-1)), or both antagonists. Intravenous candesartan reduced mean arterial pressure in all groups of rats, and this was accompanied by renal and mesenteric vasodilation. Neither saline nor PD-123319 significantly affected these variables. Concomitant PD-123319 administration partially reversed the depressor and mesenteric vasodilator effects of candesartan in sham-operated normotensive rats but not in SHR or 2K1C rats. These data indicate that the AT2 receptor contributes to the blood pressure-lowering and mesenteric vasodilator effects of AT1 receptor blockade in the acute setting in conscious normotensive but not hypertensive rats.  相似文献   

13.
Circulating ANG II modulates the baroreceptor reflex control of heart rate (HR), at least partly via activation of ANG II type 1 (AT1) receptors on neurons in the area postrema. In this study, we tested the hypothesis that the effects of circulating ANG II on the baroreflex also depend on AT1 receptors within the nucleus tractus solitarius (NTS). In confirmation of previous studies in other species, increases in arterial pressure induced by intravenous infusion of ANG II had little effect on HR in urethane-anesthetized rats, in contrast to the marked bradycardia evoked by equipressor infusion of phenylephrine. In the presence of a continuous background infusion of ANG II, the baroreflex control of HR was shifted to higher levels of HR but had little effect on the baroreflex control of renal sympathetic activity. The modulatory effects of circulating ANG II on the cardiac baroreflex were significantly reduced by microinjection of candesartan, an AT1 receptor antagonist, into the area postrema and virtually abolished by microinjections of candesartan into the medial NTS. After acute ablation of the area postrema, a background infusion of ANG II still caused an upward shift of the cardiac baroreflex curve, which was reversed by subsequent microinjection of candesartan into the medial NTS. The results indicate that AT1 receptors in the medial NTS play a critical role in modulation of the cardiac baroreflex by circulating ANG II via mechanisms that are at least partly independent of AT1 receptors in the area postrema.  相似文献   

14.
Losartan has been reported to have inhibitory effects on thromboxane (TP) receptor-mediated responses. In the present study, the effects of 2 nonpeptide angiotensin II (AT1) receptor antagonists, losartan and candesartan, on responses to angiotensin II, the thromboxane A2 mimic, U46619, and norepinephrine were investigated and compared in the pulmonary and systemic vascular beds of the intact-chest rat. In this study, intravenous injections of angiotensin II, U46619, and norepinephrine produced dose-related increases in pulmonary and systemic arterial pressure. Losartan and candesartan, in the doses studied, decreased or abolished responses to angiotensin II. Losartan, but not candesartan, and only in a higher dose, produced small, but statistically significant, reductions in pressor responses to U46619 and to norepinephrine in the pulmonary and systemic vascular beds. Furthermore, losartan significantly reduced arachidonic acid-induced platelet aggregation, whereas candesartan had no effect. Pressor responses to angiotensin II were not changed by thromboxane and alpha-adrenergic receptor antagonists, or by cyclooxygenase and NO synthase inhibitors. These results show that losartan and candesartan are potent selective AT1 receptor antagonists in the pulmonary and systemic vascular beds and that losartan can attenuate thromboxane and alpha-adrenergic responses when administered at a high dose, whereas candesartan in the highest dose studied had no effect on responses to U46619 or to norepinephrine. The present data show that the effects of losartan and candesartan on vasoconstrictor responses are different and that pulmonary and systemic pressor responses to angiotensin II are not modulated or mediated by the release of cyclooxygenase products, activation of TP receptors, or the release of NO in the anesthetized rat.  相似文献   

15.
G protein-coupled receptors are cell surface receptors that mediate the effects of extracellular signals in the endocrine/paracrine and sensory systems. Experimental evidence is accumulating, which suggest that these receptors form dimers or higher order oligomers. The functional relevance of G protein-coupled receptor dimerization or oligomerization has been raised in a number of different processes, including ontogeny, internalization, ligand-induced regulation, pharmacological diversity and signal transduction of these receptors. Agonist-independent homo- and hetero-oligomerization of the angiotensin AT1 receptor has been reported, and it has been suggested that hetero-oligomerization with beta-adrenergic receptors leads to cross-inhibition of these receptors. Much less is known about the functional interactions between AT1 receptor homo-oligomers. The aim of the present study was to analyze the functional interactions between these homo-oligomers by determining the functions of normal, AT1 receptor blocker (candesartan) resistant (S109Y) and G protein coupling deficient (DRY/AAY) AT1 receptors (co-)expressed in COS-7 cells. Although we have found no evidence that stimulation of a G protein coupling deficient receptor could cross-activate co-expressed normal receptors, candesartan binding to a signaling deficient receptor caused cross-inhibition of co-expressed candesartan resistant AT1 receptors. Since the studied mutations were in the third intracellular helix of the receptor, the observed effects cannot be explained with domain swapping. These data suggest that AT1 receptor blockers cause cross-inhibition of homo-oligomerized AT1 receptors, and support the concept that receptor dimers/oligomers serve as the functional unit of G protein-coupled receptors.  相似文献   

16.
17.
Although the sartan family of angiotensin II type 1 (AT(1)) receptor blockers (ARBs), which includes valsartan, olmesartan, and losartan, have a common pharmacophore structure, their effectiveness in therapy differs. Although their efficacy may be related to their binding strength, this notion has changed with a better understanding of the molecular mechanism. Therefore, we hypothesized that each ARB differs with regard to its molecular interactions with AT(1) receptor in inducing inverse agonism. Interactions between valsartan and residues Ser(105), Ser(109), and Lys(199) were important for binding. Valsartan is a strong inverse agonist of constitutive inositol phosphate production by the wild-type and N111G mutant receptors. Substituted cysteine accessibility mapping studies indicated that valsartan, but not losartan, which has only weak inverse agonism, may stabilize the N111G receptor in an inactive state upon binding. In addition, the inverse agonism by valsatan was mostly abolished with S105A/S109A/K199Q substitutions in the N111G background. Molecular modeling suggested that Ser(109) and Lys(199) bind to phenyl and tetrazole groups of valsartan, respectively. Ser(105) is a candidate for binding to the carboxyl group of valsartan. Thus, the most critical interaction for inducing inverse agonism involves transmembrane (TM) V (Lys(199)) of AT(1) receptor although its inverse agonist potency is comparable to olmesartan, which bonds with TM III (Tyr(113)) and TM VI (His(256)). These results provide new insights into improving ARBs and development of new G protein-coupled receptor antagonists.  相似文献   

18.
Angiotensin II type 1 (AT(1)) receptor signaling has been implicated in cerebral microvascular alterations associated with ischemia, diabetes mellitus, hypercholesterolemia, and atherosclerosis. Platelets, which express AT(1) receptors, also appear to contribute to the thrombogenic and inflammatory responses that are elicited by these pathological conditions. This study assesses the role of AT(1) receptor activation on platelet-leukocyte-endothelial cell interactions elicited in cerebral microvasculature by ischemia and reperfusion. Intravital microscopy was used to monitor the adhesion of platelets and leukocytes that were labeled with different fluorochromes, whereas dihydrorhodamine-123 was used to quantify oxygen radical production in cerebral surface of mice that were either treated with the AT(1) receptor agonist Val-angiotensin II (ANG II) or subjected to bilateral common carotid artery occlusion (BCCAO) followed by reperfusion. ANG II elicited a dose- and time- dependent increase in platelet-leukocyte-endothelial cell interactions in cerebral venules that included rolling platelets, adherent platelets on the leukocytes and the endothelial cells, rolling leukocytes, and adherent leukocytes. All of these interactions were attenuated by treatment with either P-selectin or P-selectin glycoprotein ligand 1 (PSGL-1) antibody. The AT(1) receptor antagonist candesartan and losartan as well as diphenyleneiodonium, an inhibitor of flavoproteins including NAD(P)H oxidase, significantly reduced the platelet-leukocyte-endothelial cell interactions elicited by either ANG II administration or BCCAO/reperfusion. The increased oxygen radical generation elicited by BCCAO/reperfusion was also attenuated by candesartan. These findings are consistent with an AT(1) receptor signaling mechanism, which involves oxygen radical production and ultimately results in P-selectin- and PSGL-1-mediated platelet-leukocyte-endothelial cell interactions in the cerebral microcirculation.  相似文献   

19.
The octapeptide hormone, angiotensin II (Ang II), exerts its major physiological effects by activating AT(1) receptors. In vivo Ang II is degraded to bioactive peptides, including Ang III (angiotensin-(2-8)) and Ang IV (angiotensin-(3-8)). These peptides stimulate inositol phosphate generation in human AT(1) receptor expressing CHO-K1 cells, but the potency of Ang IV is very low. Substitution of Asn(111) with glycine, which is known to cause constitutive receptor activation by disrupting its interaction with the seventh transmembrane helix (TM VII), selectively increased the potency of Ang IV (900-fold) and angiotensin-(4-8), and leads to partial agonism of angiotensin-(5-8). Consistent with the need for the interaction between Arg(2) of Ang II and Ang III with Asp(281), substitution of this residue with alanine (D281A) decreased the peptide's potency without affecting that of Ang IV. All effects of the D281A mutation were superseded by the N111G mutation. The increased affinity of Ang IV to the N111G mutant was also demonstrated by binding studies. A model is proposed in which the Arg(2)-Asp(281) interaction causes a conformational change in TM VII of the receptor, which, similar to the N111G mutation, eliminates the constraining intramolecular interaction between Asn(111) and TM VII. The receptor adopts a more relaxed conformation, allowing the binding of the C-terminal five residues of Ang II that switches this "preactivated" receptor into the fully active conformation.  相似文献   

20.
Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this “transient activation” hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin·ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号