首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na2SeO3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.  相似文献   

2.
Cell culture studies have suggested that arsenic exposure results in decreased S-adenosylmethionine (SAM), causing DNA hypomethylation. Previously, we have shown that hepatic SAM is decreased and/or S-adenosylhomocysteine increased in arsenic-deprived rats; these rats tended to have hypomethylated DNA. To determine, the effect of dietary arsenic on dimethylhydrazine (DMH)-induced aberrant crypt formation in the colon, Fisher 344 weanling male rats were fed diets containing 0,05, or 50 μg As (as NaAsO2)/g. After 12 wk, dietary arsenic affected the number of aberrant crypts (p<0.02) and aberrant crypt foci (p<0.007) in the colon and the amount of global DNA methylation (p<0.04) and activity of DNA methyltransferase (DNMT) (p<0.003) in the liver. In each case, there were more aberrant crypts and aberrant crypt foci, a relative DNA hypomethylation, and increased activity of DNMT in the rats fed 50 μg As/g compared to those fed 0.5 μg As/g. The same phenomenon, an increased number of aberrant crypts and aberrant crypt foci, DNA hypomethylation, and increased DNMT tended to hold when comparing rats fed the diet containing no supplemental arsenic compared to rats fed 0.5 μg As/g. The data suggest that there is a threshold for As toxicity and that possibly too little dietary As could also be detrimental. The U.S. Department of Agriculture, Agricultural Research Service. Northern Plains Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   

3.
Although the metabolic and toxicological interactions between essential element selenium (Se) and toxic element cadmium (Cd) have been reported for a long time, the experimental studies explored mostly acute, high-dose interactions. Limited data are available regarding the effects of Se-deficiency on toxicokinetics of cadmium, as well as on the levels of key trace elements—copper, zinc, and iron. In the present study, male and female Wistar weanling rats (n = 40/41) were fed either Se-deficient or Se-adequate diet (<0.06 or 0.14 mg Se per kilogram diet, respectively) for 12 weeks, and from week 9 were drinking water containing 0 or 50 mg Cd/l as cadmium chloride. At the end of the 12-week period, trace element concentrations were estimated by AAS. Selenium-deficient rats of both genders showed significantly lower accumulation of cadmium in the liver, compared to Se-adequate rats. Zinc and iron hepatic levels were not affected by Se-deficiency. However, a significant elevation of copper was found in the liver of Se-deficient rats of both genders. Cadmium supplementation increased zinc and decreased iron hepatic level, regardless of Se status and decreased copper concentration in Se-adequate rats. Se-deficiency was also found to influence the effectiveness of cadmium mobilization in male rats.  相似文献   

4.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 μg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 μg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 μg Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 μg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   

5.
Dietary nutrient requirements for older animals have been studied far less than have requirements for young growing animals. To determine dietary selenium (Se) requirements in old rats, we fed female weanling rats a Se-deficient diet (0.007 μg Se/g) or supplemented rats with graded levels of dietary Se (0–0.3 μg Se/g) as Na2SeO3 for 52 weeks. At no point did Se deficiency or level of Se supplementation have a significant effect (P>0.05) on growth. To determine Se requirements, Se response curves were determined for 7 Se-dependent parameters. We found that minimum dietary Se requirements in year-old female rats were at or below 0.05 μg Se/g diet based on liver Se, red blood cell glutathione peroxidase (Gpx1) activity, plasma Gpx3 activity, liver and kidney Gpx1 activity, and liver and kidney Gpx4 activity. In conclusion, this study found that dietary Se requirements in old female rats were decreased at least 50% relative to requirements found in young, rapidly growing female rats. Collectively, this indicates that the homeostatic mechanisms related to retention and maintenance of Se status are still fully functional in old female rats.  相似文献   

6.
A 42-day experiment was conducted to compare the effects of various levels of sodium selenite (SS) and Se-enriched yeast (SY) on chicken productivity, carcass traits, and breast Se concentration. Six hundred 1-day-old Cobb 500 broiler chicks were placed on 1 of 6 experimental treatments. The treatments consisted of feeding a diet without Se supplementation (basal diet) or basal diet with 0.6 mg/kg supplemented Se supplied by SS, SY, or a mix of the two (0.45 SS + 0.15 SY; 0.3 SS + 0.3 SY; 0.15 SS + 0.45 SY). Chicks in all Se-supplemented treatments had significantly higher final body weight and eviscerated weight than those on the basal diet (P < 0,05) and no significant differences were observed among selenium source (P < 0.05). Also, chicks in all Se-supplemented treatments had significantly higher Se contents in breast tissue than the control group (P < 0.05). Replacing SS by SY in the broiler diets resulted in increased concentrations of Se in the breast (P < 0.01). Strong correlations were found between breast Se concentrations and the level of SY supplementation of the broiler diet (r = 0.992). The results from this experiment indicate that SY is a superior source of selenium for the production of selenized meat, and can be used, without any detrimental effect on chicken performance, for adding nutritional value to broiler meat and thus safely improving human selenium intake.  相似文献   

7.
8.
A previous study compared the effects of folate on methyl metabolism in colon and liver of rats fed a selenium-deficient die (<3 μg Se/kg) to those of rats fed a diet containing supranutritional Se (2 mg selenite/kg). The purpose of this study was to investigate the effects of folate and adequate Se (0.2 mg/kg) on methyl metabolism in colon and liver. Weanling, Fischer-344 rats (n=8/diet) were fed diets containing 0 or 0.2 mg selenium (as selenite)/kg and 0 or 2 mg folic acid/kg in a 2×2 design. After 70 d, plasma homocysteine was increased (p<0.0001) by folate deficiency; this increase was markedly, attenuated (p<0.0001) in rats fed the selenium-deficient diet compared to those fed 0.2 mg Se/kg. The activity of hepatic glycine N-methyltransferase (GNMT), an enzyme involved in the regulation of tissue S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), was increased by folate deficiency (p<0.006) and decreased by selenium deprivation, (p<0.0003). Colon and liver SAH were highest (p<0.006) in rats fed deficient folate and adequate selenium. Although folate deficiency decreased liver SAM (p<0.001), it had no effect on colon SAM. Global DNA methylation was decreased (p<0.04) by selenium deficiency in colon but not liver; folate had no effect. Selenium, deficiency did not affect DNA methyltransferase (Dnmt) activity in liver but tended to decrease (p<0.06) the activity of the enzyme in the colon. Dietary folate did not affect liver or colon Dnmt. These results in rats fed adequate selenium are similar to previous results found in rats fed supranutritional selenium. This suggests that selenium deficiency appears to be a more important modifier of methyl metabolism than either adequate or supplemental selenium. The U.S. Department of Agriculture, Agriculture Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   

9.
Phospholipid hydroperoxide glutathione peroxidase (PHGPX) is the second intracellular selenium (Se)-dependent glutathione peroxidase (GSH-Px) identified in mammals. Our objectives were to determine the effect of dietary vitamin E and Se levels on PHGPX activity expression in testis, epididymis, and seminal vesicles of pubertal maturing rats, and the relationship of PHGPX expression with testicular development and sperm quality. Forty Sprague-Dawley male weanling rats (21-d old), were initially fed for 3 wk a torula yeast basal diet (containing 0.05 mg Se/kg) supplemented with marginal levels of Se (0.1 mg/kg as Na2SeO3) and vitamin E (25 IU/kg as all-rac-α-tocopheryl acetate). Then, rats were fed the basal diets supplemented with 0 or 0.2 mg Se/kg and 0 or 100 IU vitamin E/kg diet during the 3-wk period of pubertal maturing. Compared with the Se-supplemented rats, those fed the Se-deficient diets retained 31, 88, 67, and 50% of Se-dependent GSH-Px activities in liver, testis, epididymis, and seminal vesicles, respectively. Testes and seminal vesicles had substantially higher (5-to 20-fold) PHGPX activity than liver. Dietary Se deficiency did not affect PHGPX activities in the reproductive tissues, but reduced PHGPX activity in liver by 28% (P < 0.0001). Dietary vitamin E supplementation did not affect PHGPX activity in liver, whereas it raised PHGPX activity in seminal vesicles by 43% (P < 0.005). Neither dietary vitamin E nor Se levels affected body weight gains, reproductive organ weights, or sperm counts and morphology. In conclusion, expression of PHGPX activity in testis and seminal vesicles was high and regulated by dietary Se and vitamin E differently from that in liver.  相似文献   

10.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 microg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 microg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 mug Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 microg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   

11.
Deficiencies in Cu, Se, and Zn impair one or more biochemical functions, and excess are associated with toxicity. Baseline studies on the Ghanaian population are scanty. The study was undertaken to determine whether significant rural/urban differences in the serum levels of Cu, Se, and Zn did exist. Forty males/60 females from rural and 50 males/50 females from urban Ghanaian communities were sampled. Serum Cu, Se, and Zn were determined using flame atomic absorption spectrometry. Cu level for rural and urban subjects was 997 ± 333 and 979 ± 290 μg/L, respectively (p = 0.68). However, Cu levels were significantly higher in the rural females (1,063 ± 367 μg/L) than the rural males (898 ± 249 μg/L; p = 0.0085). Se levels for rural/urban subjects were 97 ± 36 and 87 ± 31 μg/L, respectively (p = 0.03). Zn levels in the rural/urban subjects were 312 ± 218 and 150 ± 102 μg/L, respectively (p = 0.002). Additionally, Zn was significantly higher in rural females (428 ± 204 μg/L) than the urban females (166 ± 103 μg/L; p = 0.0002). Finally, Zn was significantly higher in rural females (428 ± 204 μg/L) than males (172 ± 116 μg/L; p = 0.0028). In conclusion, Cu, Se, and Zn were higher in the rural group compared to the urban group, and the generally low Zn levels were confirmed in another cohort follow-up study.  相似文献   

12.
This study was conducted to determine the effects of dietary supplementation with Cr nicotinate and Cr chloride and their optimum inclusion rate on performance, carcass traits, meat oxidative stability, serum metabolites, hematological parameters, and liver chromium concentration in heat-stressed broilers. A total number of 420, 1-day-old male broiler chicks were randomly assigned to seven treatments with four replicates of 15 chicks. The dietary treatments consisted of the basal diet supplemented with 0 (control), 500, 1,000, and 1,500 μg/kg Cr in the form of Cr nicotinate and Cr chloride. Chicks were raised for 6 weeks in heat stress condition (33 ± 2°C). Supplements of organic and inorganic Cr particularly at 1,500 μg/kg incorporation increased feed consumption (P < 0.05) and body mass gain of broilers (P < 0.01). Cr supplementation increased carcass yield and decreased abdominal fat (P < 0.01). Supplementation of 1,500 μg/kg Cr nicotinate (P < 0.05) enhanced liver Cr concentration. Storage time increased lipid oxidation of meat (P < 0.01). Cr decreased lipid oxidation of breast and thigh muscles over 2 (P < 0.01) or 6 (P < 0.05) days of storage time. Birds fed 1,500 μg/kg Cr nicotinate, had lower concentration of serum glucose and triglyceride at 21 days (P < 0.05). Hematological parameters tested at 21 and 42 days, were not influenced. The results suggested that dietary Cr supplementation regardless of its source have a positive effect on productive, and carcass traits, also enhances oxidative stability of refrigerated meat in broilers reared under heat stress conditions.  相似文献   

13.
The present study was conducted to investigate the effects of chromium histidinate (CrHis) against experimentally induced type II diabetes and on chromium (Cr), zinc (Zn), selenium (Se), manganese (Mn), iron (Fe), and copper (Cu) in serum, liver, and kidney of diabetic rats. The male Wistar rats (n = 60, 8 weeks old) were divided into four groups. Group I received a standard diet (12% of calories as fat); group II were fed standard diet and received CrHis (110 mcg CrHis/kg body weight per day); group III received a high-fat diet (HFD; 40% of calories as fat) for 2 weeks and then were injected with streptozotocin (STZ) on day 14 (STZ, 40 mg/kg i.p.; HFD/STZ); group IV were treated as group III (HFD/STZ) but supplemented with 110 mcg CrHis/kg body weight per day. The mineral concentrations in the serum and tissue were determined by atomic absorption spectrometry. Compared to the HFD/STZ group, CrHis significantly increased body weight and reduced blood glucose in diabetic rats (p < 0.001). Concentrations of Cr, Zn, Se, and Mn in serum, liver, and kidney of the diabetic rats were significantly lower than in the control rats (p < 0.0001). In contrast, higher Fe and Cu levels were found in serum and tissues from diabetic versus the non-diabetic rats (p < 0.001). Chromium histidinate supplementation increased serum, liver, and kidney concentrations of Cr and Zn both in diabetic and non-diabetic rats (p < 0.001). Chromium supplementation increased Mn and Se levels in diabetic rats (p < 0.001); however, it decreased Cu levels in STZ-treated group (p < 0.001). Chromium histidinate supplementation did not affect Fe levels in both groups (p > 0.05). The results of the present study conclude that supplementing Cr to the diet of diabetic rats influences serum and tissue Cr, Zn, Se, Mn, and Cu concentrations.  相似文献   

14.
Chemical carcinogenesis can be characterized by a sequence of events leading to the development of tumors. Selenium (Se) inhibition of colon, liver, and lung carcinogens is demonstrated. Using the male Sprague Dawley rat model Se inhibited the colon tumor incidence in 1,2-dimethylhydrazine (DMH) treated rats and reduced the total number of colon tumors in methylazoxymethanol (MAM) treated rats. Selenium inhibited 2-acetylaminofluorene (AAF) and 3′-methyl-4-dimethylaminoazobenzene (3′-MeDAB) hepatocarcinogenesis. The hepatic tumor incidence induced by 3′-MeDAB was reduced by both inorganic Se (Na2SeO3) and by organic Se (Se-yeast) supplements. In vitro systems have been studied in an effort to decipher the inhibitory properties of Se on the multistage origin of tumors induced by chemical carcinogens. Current studies suggest that the protective effect of Se against AAF hepatocarcinogenesis may be correlated with a change in AAF metabolism. The mutagenicity of AAF and AAF metabolites inSalmonella typhimurium TA1538 is decreased by Se. Additionally, Se reduced N-t-OH−AAF induction of sister chromatid exchange (SCE) frequencies in whole blood cultures, and also reduced aryl hydrocarbon hydroxylase activity using benzo(a) pyrene as substrate. The comparative effects of antioxidants on DMH induction of colon tumors are presented in detail. Supplements of 4 ppm Se to the drinking water, 1.2% ascorbic acid (V c ) to the diet or 0.5% butylated hydroxytoluene (BHT) to the diet of DMH-treated rats reduced the colon tumor incidence of DMH controls from 64 to 31% (Se), 38% (V c ), and 43% (BHT). The colon tumor incidence in DMH-treated rats receiving a combination of Se+V c increased to 83%, while the combination of Se+BHT decreased the colon tumor incidence to 55%. The growth and survival of rats provided long-term supplements of 4 ppm Se in the drinking water are compared with untreated controls.  相似文献   

15.
The ability of selenium (Se) to act as a redox catalyst is an important factor in understanding the biological function of selenoproteins in addition to that of GSH peroxidase. Selenocystine at micromolar levels exhibited pseudothiotransferase activity by enhancing the reduction of 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) by thiols. In contrast, selenite inhibited the reduction of DTNB by thiols. Selenite was more catalytic than selenocystine in the reduction of cytochrome c by GSH, whereas GSH peroxidase was a weak catalyst. Tissues from Se-deficient and Se-supplemented rats were assayed for activities of GSH-thiotransferase, NADPH cytochrome c reductase, formaldehyde dehydrogenase, and a hypothesized GSH cytochrome c reductase. GSH-thiotransferase activity was significantly increased in the liver of Se-deficient rats. No appreciable activity of this enzyme was found in the kidney of rats from either dietary group. No enzymatic activity for cytochrome c reduction by GSH was detected in cytosols, mitochondria, or microsomes from liver and kidney of Se-deficient or Se-supplemented rats. Formaldehyde dehydrogenase was significantly higher in liver cytosols from Se-supplemented rats than from Se-deficient rats. The higher activity was not attributed to Se-containing proteins, but to an unknown small molecular-weight factor. This study did not support the hypothesis that physiological levels of Se may be involved in sulfhydryl-disulfide exchange reactions in vivo, or that selenium may enhance cytochrome c reduction by GSH in vivo.  相似文献   

16.
Selenium (Se) is an essential trace element for humans and animals. Stropharia rugoso-annulata is a nutritional and functional mushroom containing many kinds of bioactive ingredients. The aims of this study were to investigate the Se-enrichment characteristics of S. rugoso-annulata in submerged culture and evaluate the antioxidant activities of Se-enriched mycelia in vivo in terms of the values of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA). The optimum parameters of Se-enrichment under the optimal Se concentration (150 μg/mL) in media were as follows: biomass 8.11 ± 0.25 g/L, Se content in mycelia 4,727.68 ± 13 μg/g, Se-accumulated rate 24.68 ± 1.67%, and percentage of organic Se 96.27 ± 3.26%. The mainly subsistent forms of selenium in Se-enriched mycelia were selenoprotein and selenium-polysaccharide. The contents of total amino acids (TAA) and essential amino acids (EAA) in Se-enriched mycelia were increased by 13.5 ± 1.09% and 12.8 ± 0.89%, respectively. It was efficient for Se-enriched mycelia to elevate GSH-Px and SOD activities and decrease MDA content. These results indicated that Se-enriched mycelia of S. rugoso-annulata represent a novel dietary source of bioavailable supplemental selenium.  相似文献   

17.
Presently, the effect of selenium (Se) deficiency and excess of Se (1 ppm) on the activity of selenoenzymes type 1 5′-iodothyronine deiodinase (5′-DI), glutathione peroxidase (GSH-Px), and level of thyroid hormones (T3 and T4) was studied in rats. Se levels in the serum and liver, T3 and T4 in the serum, GSH-Px levels in the liver, and 5′-DI activity in the liver/aorta/thyroid were estimated after 1, 2, and 3 mo of Se-deficient (0.02 ppm), Se-adequate (0.2 ppm), and Se-excess (1 ppm) diet feeding. All of these parameters decreased significantly in the Se-deficient group as compared to the adequate group. Within the deficient group, as the Se deficiency progressed, all of the parameters except 5′-DI decreased after 2 and 3 mo in comparison to 1-mo data. Thyroidal 5′-DI activity in Se deficiency showed the maximum increase. A significant increase was observed in all of the above parameters in the 1 ppm Se-supplemented diet group when compared with the adequate Se group; also, as the Se deposition increased within the Se-excess diet group, a significant increase was observed in all of the above parameters. However, as observed by others, the intake of excess of Se (i.e., 2 ppm in the diet) did not elevate the activities of selenoenzymes and thyroid hormones; rather, it had adverse effects. The present study concludes that Se supplementation at least up to 1 ppm enhances the selenoenzyme activities, and above this level, it may not be considered as an indicator of selenoenzyme activities.  相似文献   

18.
The influence of dietary selenium (Se) on mercury (Hg) toxicity was studied in weanling male Long Evans rats. Rats were fed AIN-93G-based low-Se torula yeast diets or diets augmented with sodium selenite to attain adequate- or rich-Se levels (0.1, 1.0 or 15 μmol/kg, respectively) These diets were prepared with no added methylmercury (MeHg) or with moderate- or high-MeHg (0.2, 10 or 60 μmol/kg, respectively). Health and weights were monitored weekly. By the end of the 9-week study, MeHg toxicity had impaired growth of rats fed high-MeHg, low-Se diets by approximately 24% (p < 0.05) compared to the controls. Growth of rats fed high-MeHg, adequate-Se diets was impaired by approximately 8% (p < 0.05) relative to their control group, but rats fed high-MeHg, rich-Se diets did not show any growth impairment. Low-MeHg exposure did not affect rat growth at any dietary Se level. Concentrations of Hg in hair and blood reflected dietary MeHg exposure, but Hg toxicity was more directly related to the Hg to Se ratios. Results support the hypothesis that Hg-dependent sequestration of Se is a primary mechanism of Hg toxicity. Therefore, Hg to Se molar ratios provide a more reliable and comprehensive criteria for evaluating risks associated with MeHg exposure.  相似文献   

19.
The aim of this study was to determine concentrations of selenium in the liver and kidneys of roe deer and red deer from West Pomerania, depending on the season. Altogether, samples from 169 animals were collected (96 from roe deer and 73 from red deer) in 2003–2007. The mean concentration of selenium in the liver of red deer and roe deer was 0.37 μg/g and 0.62 μg/g dry weight, respectively. In kidneys, Se concentration was 2.72 μg/g d.w. in red deer and 2.99 μg/g d.w. in roe deer. In roe deer, liver selenium concentration in autumn was significantly higher than in winter (P < 0.05) and spring (P < 0.01) and significantly lower in spring than in summer (P < 0.05); likewise, kidney selenium concentration was higher in autumn than in summer. In deer, no statistically significant season-related differences were observed for liver selenium concentrations. In red deer kidneys, selenium concentration was the lowest in summer, significantly lower than in autumn and winter. Low selenium concentrations in the analyzed tissues show that the animals live in areas deficient in this element.  相似文献   

20.
The aim of the present study is to evaluate the effects of diet enriched with dietary fiber of barley variety “Rihane” and azoxymethane on serum and liver lipid variables in male rats. Forty male rats were divided into four groups and fed on control diet or experimental diet that contained control enriched with dietary fiber of barley variety “Rihane”. Animals were injected with saline (controls) or azoxymethane (20 mg/kg body weight s.c.) at 7 and 8 weeks of age. The experimental diet significantly decreased cholesterol level compared with the control diet. Rats fed with BR diet significantly increased the serum high-density lipoprotein (HDL) cholesterol and significantly decreased low-density lipoprotein (LDL) cholesterol concentrations. The experimental diet decreased the atherogenic index (p < 0.05) compared with the control diet. Whereas the azoxymethane induced a significant increase of liver lipid, serum LDL and triglyceride concentrations, but it caused a significant reduction of HDL. Consequently, the ratio of HDL/TC decreased significantly compared with the control (p < 0.05). Accordingly, these results indicated that the diet enriched with dietary fiber of barley variety “Rihane” could be effective in decreasing the atherogenic risk factors in rats whereas the use of the azoxymethane as colon-specific carcinogen substance altered the lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号