首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of natural variation in abiotic conditions on the herbivory interaction between Prunus mahaleb (Rosaceae) and its monophagous folivore, larvae of Yponomeuta mahalebella (Lepidoptera, Yponomeutidae), was analysed for 2 consecutive years along an elevational gradient in Sierra de Cazorla, south-east Spain. 2. There was a negative correlation between site elevation and mean population herbivory level measured at the end of the growing period of Y. mahalebella. Mortality during larval development was higher at higher elevation sites, and mean adult body mass was higher in lower elevation populations. 3. Variation in temperatures recorded during the larval growth period at different altitudes was the only study factor related to abundance of Y. mahalebella larvae; neither differences in parasitisation rates nor plant features covaried significantly with herbivore abundance. 4. These results support the existence of geographical variation in plant–animal interactions in relation to environmental heterogeneity.  相似文献   

2.
3.
In the southeastern part of the Netherlands many Scots pine ( Pinus sylvestris L.) trees show signs of yellowing. To investigate whether there is a relation between this phenomenon and the high ammonium deposition, needle and soil samples were analyzed. Soil samples from the discoloured forests contained more extractable nitrogen than samples from healthy stands, whereas differences in pH values were small. Needles from yellow trees had higher levels of total nitrogen than needles from green trees as well as severe imbalances of Mg, K+ and P relative to N. The amount of leaf pigments was substantially lower in needles of the diseased trees, but they contained much higher quantities of free arginine, which accounted for a major part of total nitrogen. This may be an indication of a severe nitrogen overload. The linkage between this excessive nitrogen nutrition and the observed process of yellowing is discussed.  相似文献   

4.
In the United Kingdom, Panolis flammea (Den. and Schiff.) (Lepidoptera: Noctuidae) is an important pest species of the introduced lodgepole pine but not of its natural host Scots pine. The timing of P. flammea larval growth must be synchronized with its host tree if the larvae are to succeed. We collected field data during 1990 which revealed that the phenological window starts earlier in Scots pine and is shorter than that observed in lodgepole pine. The larvae are found in the field earlier and within a narrower time frame within a Scots pine forest than in a lodgepole pine forest. The larval developmental period is significantly longer on lodgepole pine than on Scots pine. The synchrony/asynchrony of P. flammea to its natural host (Scots pine) and an introduced tree (lodgepole pine) results in the parasitoids having a different impact on the larvae of the two hosts. At any one time, the host plant, caterpillars and parasitoids are more synchronous on the ancestral Scots pine than on lodgepole pine, resulting in a higher percentage of larvae in the optimal instar for parasitism at that time. In lodgepole pine, the percentage of suitable instars available to parasitoids is lower at any given time. The information presented here furthers our understanding of the possible mechanisms for the observed differential population dynamics of the insect on Scots pine and lodgepole pine in the UK. Handling editor: Robert Glinwood.  相似文献   

5.
Seedlings of gymnosperms, unlike angiosperms, synthesize chlorophyll(ide) (Chl) in darkness (D). In Scots pine cotyledons ( Pinus sylvestris L.) Chl accumulation ceases in D at a low level but Chl accumulation is strongly increased by light, red light (R) being more effective than blue light (B), whereas in Pinus maritima Chi synthesis is almost light-independent. In Scots pine the capacity to form Chl can be increased by R pulses, fully reversible by far-red light, demonstrating the involvement of phytochrome. However, when B- or R–grown seedlings were transferred to D, Chl accumulation stopped immediately irrespective of the level of Pfr (far-red light absorbing form of phytochrome), indicating that the conversion of protochlorophyllide (PChl) is light-dependent. Dose response curves in R and B and simultaneous irradiation with R and B show that R and B are perceived by separate photoreceptors. The immunodetected NADPH-dependent protochlorophyllide oxidoreductase (POR, EC 1.6.99.1), assumed to regulate light-dependent Chl synthesis in angiosperms, is not correlated with the capacity of gymnosperm Chi accumulation in darkness. While two FOR bands could be separated in extracts from dark grown material (38 and 36 kDa) of Pinus sylvestris and P. maritima , only the 38 kDa band disappeared consistently in the light. However. the significance of the more light resistant 36 kDa band for chlorophyll synthesis remains unclear as well.  相似文献   

6.
Recovery of photosynthesis in winter-stressed Scots pine   总被引:4,自引:5,他引:4  
Abstract. . Winter-induced inhibition of photosynthesis in Scots pine (Pinns sylvestris L.) is caused by the combined effects of light and freezing temperatures; light causes photoinhibition of photosystem II (Strand & Oquist, 1985b, Physiologic Plantarum, 65 , 117–123), whereas frost causes inhibition of enzymatic steps of photosynthesis (Strand & Öquist, 1988, Plant, Cell & Environment, 11 , 231–238). To reveal limiting steps during recovery from winter stress, the potential of photosynthesis to recover and the actual recovery outdoors during spring, were studied in Scots pine. Studies of light dependent O2-evolution under saturating CO2 and recordings of room temperature fluorescence induction kinetics were used. When branches of pine, in February and March, were brought into the laboratory and kept at 18°Cand 100μmol m?2 s?1, light saturated rates and apparent quantum yields of photo-synthetic O2-evolution recovered fully within approximately 48h. The photochemical efficiency of photosystem II, as measured by Fv/Fm ratios, recovered fully within 24h after an initial lag-phase of 2-3 h. Under natural winter conditions, the Fv/Fm ratio decreased more in exposed than in shaded pine, whereas the efficiency of photosynthesis was similarly inhibited in exposed and shadedpine. However, when recovery from winter stress occurred during spring, the Fv/Fm ratios of both shaded and exposed pine recovered well before photosynthesis. It is concluded that the light-induced photoinhibition component of winter stress in photosynthesis of pine recovers well before the frost induced component(s) of winter stress. In this context, reversible photoinhibition of photosynthesis in evergreen conifers is considered as a dynamic down-regulation of photosystem II to prevent more severe photodynamic damage of the thylakoid membrane when photosynthesis is inhibited by frost.  相似文献   

7.
Ammonium assimilation enzymes from several strains of ectendo- and ectomycorrhizal fungi were assayed after three weeks culture on a buffered synthetic medium containing ammonium as sole nitrogen source. Activity of NADP-dependent glutamate dehydrogenase (GDH, EC 1.4.1.4) of ectomycorrhizal strains was very low despite excellent mycelial growth. Only ectendomycorrhizal fungus MrgX isolated from roots of Pinus sylvestris showed high GDH activity. Similar results were obtained when the enzyme extracts were subjected to starch gel electrophoresis. Growth of the fungi, except ectendomycorrhizal MrgX, was arrested when inhibitors of glutamine synthetase (GS, EC 6.3.1.2) or glutamate synthase (GOGAT. EC 1.4.7.1) (methionine sulphoximine or albizine, respectively) were included in the culture medium. Glutamine synthetase activity was found in all fungi tested. The results suggest that the GS pathway for ammonium assimilation is potentially operative in ectomycorrhizal fungi and imply only a minor role for GDH in ammonium assimilation by the studied ectomycorrhizal symbionts of pine. Some physiological and ecological implications of these results are discussed.  相似文献   

8.
9.
An earlier onset of photosynthesis in spring for boreal forest trees is predicted as the climate warms, yet the importance of soil vs air temperatures for spring recovery remains to be determined. Effects of various soil- and air-temperature conditions on spring recovery of photosynthesis in Scots pine (Pinus sylvestris) seedlings were assessed under controlled environmental conditions. Using winter-acclimated seedlings, photosynthetic responses were followed after transfer to different simulated spring conditions. Recovery rates for photosynthetic electron transport and net CO(2) uptake were slower in plants from cold or frozen soil compared with controls. In addition, a greater fraction of light absorbed was not used photochemically, but was dissipated thermally via xanthophyll cycle pigments. Intermittent frost events decreased photosynthetic capacity and increased thermal energy dissipation. Within a few days after frost events, photosynthetic capacity recovered to prefrost levels. After 18 d under spring conditions, no difference in the optimum quantum yield of photosynthesis was observed between seedlings that had been exposed to intermittent frost and control plants. These results show that, if air temperatures remain favourable and spells of subfreezing air temperatures are only of short duration, intermittent frost events delay but do not severely inhibit photosynthetic recovery in evergreen conifers during spring. Cold and/or frozen soils exert much stronger inhibitory effects on the recovery process, but they do not totally inhibit it.  相似文献   

10.
Abstract .1. The pine sawfly, Neodiprion autumnalis , infests ponderosa pine, Pinus ponderosa , growing at low densities near the bottom of an altitudinal gradient in Arizona, U.S.A. The relative importance of host-plant quality vs. natural-enemy effects in determining the spatial distribution of this sawfly was examined over a 3-year period.
2. Field and laboratory bioassays were conducted on all life stages of N. autumnalis at two forest stand densities (high ≥ 23 m2 ha–1, low ≤ 7 m2 ha–1) and at two elevations (bottom slope = 2390 m, top slope = 2540 m). These experiments were used for constructing life tables of N. autumnalis that compared the effects of host-plant quality on oviposition preference and progeny performance with the effects of natural enemies at different tree densities and elevations.
3. Life-table analyses determined that mortality attributed to host-plant effects during the egg and larval stages had the largest impact on fitness between tree densities and elevations.
4. Natural enemies caused a significant reduction in progeny survival, but their effects were similar across all tree densities and elevations during egg and larval life stages. However, cocoon-stage survival did vary between tree densities and elevations due to natural-enemy effects.
5. It was concluded that the observed oviposition preference for, and higher progeny performance on, trees at low densities and bottom slope elevations were caused primarily by host-plant effects.
6. These results further the argument that heterogeneity at the resource level (i.e. bottom-up forces) determines potential outcomes of multitrophic level interactions.  相似文献   

11.
The frost hardiness of 20 to 25-year-old Scots pine (Pinus sylvestris L.) saplings was followed for 2 years in an experiment that attempted to simulate the predicted climatic conditions of the future, i.e. increased atmospheric CO2 concentration and/or elevated air temperature. Frost hardiness was determined by an electrolyte leakage method and visual damage scoring on needles. Elevated temperatures caused needles to harden later and deharden earlier than the controls. In the first year, elevated CO2 enhanced hardening at elevated temperatures, but this effect disappeared the next year. Dehardening was hastened by elevating CO2 in both springs. The frost hardiness was high (相似文献   

12.
13.
Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine ( Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.  相似文献   

14.
Seedlings of Scots pine ( Pinus sylvestris L.) were grown on perlite for 21 days under controlled conditions. Apart from the water control, KNO3 (15 m M ), (NH4)2SO4 (7.5 m M ), and NH4NO3 (15 m M ) were offered to study the effects of a high nitrogen supply on nitrogen assimilation. In some experiments 1.3 m M potassium was added to the basic ammonium solutions. In labelling studies nitrate and ammonium were 2.3 atom%15N-enriched. It was found that over the 21-day period approximately three times more ammonium-N was taken up than nitrate-N. However, nitrate and ammonium, applied simultaneously, were taken up to the same extent as if they were applied separately (additivity). The presence of K+ in the medium did not affect N-uptake. Among the soluble N-containing compounds nitrate, ammonium and 8 amino acids were quantified. It was found that assimilation of nitrate can cope with the uptake of NO3 under all circumstances. Neither free nitrate nor ammonium or amino acids accumulated to an extent exceeding the values of water-grown seedlings. On the other hand, in case of high ammonium supply considerably more nitrogen was taken up than could be incorporated into nonsoluble N-containing substance ('protein'). The remaining nitrogen was found to accumulate in intermediary storage pools (free NH4+, glutamine, asparagine, arginine). Part of this accumulated N could be incorporated into protein when potassium was offered in the nutrient solution. It is concluded that potassium is a requirement for a high rate of protein synthesis not only in crop plants but also in conifers.  相似文献   

15.
The carbohydrate metabolism of the needles of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) has been examined in trees that were exposed to SO2, and O3, in an open-air fumigation experiment located in the Liphook forest in southern England. Two-year-old seedlings were planted in 1985 in seven experimental plots. Five plots received fumigation treatments of SO2, O3 or a combination of these gases to give a 2 × 3 factorial design with one additional ambient plot Fumigation with SO2, occurred from May 1987 to December 1990 and O3, fumigation occurred from March to December 1988, May to December 1989 and February to December 1990. Five samples of needles for investigation of carbohydrate metabolism were taken between February and July 1989. The concentrations of soluble carbohydrates (including sucrose and hexoses) were greatly reduced in the needles taken from Scots pine growing in the treated plots, and were also reduced, but to a lesser extent, in the needles taken from Norway spruce. Little variation in the concentration of starch in the needles of either species was detected. The activities of the two final enzymes of sucrose synthesis, sucrose phosphate synthase and sucrose 6-phos-phate phosphatase, were greatly reduced in the needles of Scots pine and were also reduced, but to a lesser extent, in the needles of Norway spruce in the fumigated plots. These reductions could be correlated with decreases in rates of photosynthetic CO2 assimilation determined by independent groups of researchers working on the Liphook site.  相似文献   

16.
Changes in protein synthesis in cambial region cells were monitored in 1-year-old cuttings of Scots pine ( Pinus sylvestris L.) collected in November, when the cambium was dormant, and subjected to environmental conditions that promoted or inhibited cambial growth. The proteins were labelled in vivo with L-[35S]-methionine and separated using 2-dimensional polyacrylamide gel electrophoresis. In budded cuttings cultured under environmental conditions favoring cambial reactivation, there was a reproducible quantitative change in 55 proteins (33 induced and 22 repressed), a less certain increase or decrease in 40 proteins, and no apparent change in about 150 proteins. Under the same conditions, 8 proteins were induced and 6 others were repressed in debudded cuttings treated apically with 1 mg indole-3-acetic acid (IAA) in 1 g lanolin, in which cambial reactivation occurred, compared with debudded cuttings treated with plain lanolin in which the cambium did not reactivate. Three of the proteins induced in the IAA-reated cuttings only appeared after cambial cell division and derivative differentiation actually began, and the same proteins were found in budded cuttings after their cambium had become reactivated. In contrast, protein expression in cuttings exposed to environmental conditions that prevented cambial reactivation was similar at the beginning and end of the experimental period. These results indicate that the cambium was in the quiescence stage of dormancy at the start of the experiment, that quiescent cambial region cells can synthesize proteins as soon as exposed to environmental conditions favoring reactivation, and that only 3 of the approximately 250 proteins detected were specifically involved in cambial growth  相似文献   

17.
Abstract: Feeding bioassays were conducted on several Pinus sylvestris clones to establish if there were any differences in suitability for two pine defoliators: the sawfly Diprion pini L. (Hym., Diprionidae), which causes considerable damage in Europe, and the rare and protected moth Graellsia isabellae galliaegloria Oberthür (Lep., Attacidae). There were significant differences in survival, weight, sex-ratio and female fecundity of D. pini on Scots pine clones. However, sawfly survival appeared to be the most stable variable in time and three clone categories were revealed by conducting feeding bioassays on 16 clones. The survival of G. isabellae galliaegloria until the formation of the chrysalis was significantly different among clones. It varied from 35 to 75% but no clear clone category was distinguished . The two clone classifications according to insect survival showed differences. In particular, one unsuitable clone for D. pini development appeared to be favourable to moth development. The 3-carene richness of foliage was significantly linked with sawfly survival and the monoterpene composition of foliage was not linked with G. isabellae galliaegloria survival.  相似文献   

18.
19.
Hannu Raitio 《Plant and Soil》1991,131(2):251-259
This study deals with the effect of pine bark bugs (Aradus cinnamomeus Panzer) on the nutrition of young Scots pines (Pinus sylvestris L.). Soil and needle samples for analytical purposes were collected from a young pine stand growing on a dry barren mineral soil afflicted by pine bark bugs.The damage to vascular tissues caused by pine bark bugs disturbed the nutrition of the trees, especially in the top part of the crown. The foliar calcium, magnesium, manganese and sulphur concentrations were highly reduced. Scots pines suffered from a lack of calcium, magnesium, nitrogen and phosphorus. These deficiencies were secondary by nature, because no differences were observed between the nutrient concentrations of the underlying soil of the healthy and affected trees. The symptoms of trees damaged by pine bark bugs resembled most of all calcium deficiency symptoms.  相似文献   

20.
Vegetative buds of Scots pine ( Pinus sylvestris L.) were collected during the apparently dormant phase in January and February and at the beginning of the growth phase in May. Wintering Scots pine plants were placed in climate chambers in which either the daily photoperiod or the temperature simulated the situation in early spring, whereas the other conditions were characteristic of midwinter.
The amount of total ribosome populations and their in vitro translation capacities were independent of the height of the tree or place of collection, but both were dependent on the season; the amount of ribosomes per fresh weight of buds was lower in spring than in winter, whereas the translation capacity in spring exceeded that in winter. Poly(A)+ RNA was purified from the ribosomes and translated in vitro and the translation products were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The polypeptide patterns proved that changes in gene expression can occur in plants growing outdoors even during the season of severe cold. In the climate chamber experiments, lengthening of the daily photoperiod increased the in vitro translation capacity of the buds within 7 days even at temperatures below 0°C, whereas a rise in temperature seemed to cause a more transient stress effect. Both treatments induced alterations in the pattern of in vitro polypeptide synthesis. It is suggested that while improvements in both light and temperature hastened the development of the buds under experimental growth conditions, the lengthening of the day may be the factor which induces a change in wintertime metabolism under natural conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号