首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of testosterone by Leydig cells in the postnatal ontogeny during sexual maturation under in vitro stimulation by chorionic gonadotropin, dibutiryl-cAMP, and pregnenolon was studied in males of four inbred mouse lines (BALB/c, PT, CBA/Lac, and A/He) and their F1 reciprocal hybrids. Highly statistically significant association between the animal genotype and age was revealed for all parameters studied, which indicates the genotype-dependent formation of the Leydig cell hormone function during the postnatal ontogeny. The effect of genotype was characterized by two specific features. First, in each postnatal ontogeny stage examined correlative genetic variability of the cAMP- and substrate-dependent Leydig cell responsiveness was observed. Second, during postnatal ontogeny coordinated genetic variability underwent substantial ontogenetic changes. Definite pattern of genetic differences in the Leydig cell hormone activity was formed only at the late pubertal–early post-pubertal stage (60th day after birth). This process coincided with the completion of the Leydig cell morphological differentiation and the appearance of mature cells in the population. Thus, formation of the Leydig cell hormone function during postnatal ontogeny is under coordinated genetic control, which itself undergoes significant changes during sexual maturation.  相似文献   

2.
Changes in in vitro testosterone production by Leydig cells induced by chorionic gonadotropin, dibutyryl-cAMP, and pregnenolone have been studied during postnatal development of four inbred mouse strains BALB/c, PT, CBA/Lac, and A/He, with contrast hormonal activity of testes in sexually mature males. The interlinear differences significantly change with age of the males by all studied indices indicating genotype-dependent formation of hormonal activity of Leydig cells during postnatal development. Coordinated interlinear variability between all indices of Leydig cells reactivity has been established for each studied period of postnatal development. Hence, we have established coordinated interlinear genetic variability of hormonal function of Leydig cells, which was confirmed by considerable changes in it during postnatal development at puberty. Definitive genotypic differences in hormonal activity of Leydig cells appeared by late pubertal and early postpubertal development (day 60) and coincided with termination of morphological differentiation of Leydig cells and appearance of the differentiated cell population.  相似文献   

3.
Changes in in vitro testosterone production by Leydig cells induced by chorionic gonadotropin, dibutyryl-cAMP, and pregnenolone have been studied during postnatal development of four inbred mouse strains BALB/c, PT, CBA/Lac, and A/He, with contrast hormonal activity of testes in sexually mature males. The interlinear differences significantly change with age of the males by all studied indices indicating genotype-dependent formation of hormonal activity of Leydig cells during postnatal development. Coordinated interlinear variability between all indices of Leydig cells reactivity has been established for each studied period of postnatal development. Hence, we have established coordinated interlinear genetic variability of hormonal function of Leydig cells, which was confirmed by considerable changes in it during postnatal development at puberty. Definitive genotypic differences in hormonal activity of Leydig cells appeared by late pubertal and early postpubertal development (day 60) and coincided with termination of morphological differentiation of Leydig cells and appearance of the differentiated cell population.  相似文献   

4.
Platelet-derived growth factor-A (PDGF-A) is a locally produced growth factor in the rat testis secreted by both Sertoli cells and Leydig cells. It has been suggested that PDGF-A may be involved in modulation of testosterone production and may be essential to Leydig cell differentiation, however it is not known at what stage of differentiation PDGF-A begins to be expressed in the cells of Leydig lineage in the postnatal rat testis. Therefore, the objectives of this research were to determine at what postnatal age and in which cell type is PDGF-A first expressed in cells of the adult Leydig cell lineage, and does PDGF-A expression coincide with expression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD), an indicator of steroid hormone synthesis. Male Sprague Dawley rats of postnatal day 1, 7, 9-14, 21, 28, 40, 60, and 90 were used (n=6). Animals were euthanized and their testicles removed, fixed in Bouin's solution, embedded in paraffin, and 5 micrometers sections were prepared. Immunolocalization of PDGF-A and 3beta-HSD was carried out using a peroxidase-streptavidin-biotin method. PDGF-A was first detected in cells of the Leydig cell lineage at postnatal day 10 in progenitor cells, which were surrounding the seminiferous tubules (peritubular). These cells were confirmed to be the progenitor cells and not the mesenchymal or any other spindle-shaped cells in the testis interstitium by immunolocalization of 3beta-HSD and PDGF-A in the cells in adjacent sections of testis tissue from rats of postnatal days 10-14. After postnatal day 10, PDGF-A was continued to be expressed in subsequent cells of the Leydig lineage through day 90 (adult), however, was not present in peritubular mesenchymal precursor cells of the Leydig cell lineage or any other spindle-shaped cells in the testis interstitium at any tested age. These results revealed that PDGF-A first appears in Leydig progenitor cells in the postnatal rat testis at the onset of mesenchymal cell differentiation into progenitor cells at postnatal day 10 and suggest that a functional role(s) of PDGF-A in postnatally differentiated Leydig cells in the rat testis is established at the time of the onset of postnatal Leydig stem cell differentiation. It is suggested that the significance of the first expression of PDGF-A in the Leydig progenitor cells may be associated with inducing cell proliferation and migration of this cell away from the peritubular region during Leydig cell differentiation.  相似文献   

5.
Leydig cells in the adult rat testis differentiate during the neonatal-prepubertal period. However, the stimulus for the initiation of their differentiation is still not clear. In the present study our objectives were to test the effects of thyroid hormone and LH on the initiation of precursor cell differentiation into Leydig cells in the prepubertal rat testis. Four groups of Sprague-Dawley rats were used. All treatments began at postnatal Day 1. Rats in groups I, II, and III received daily s.c. injections of saline (200 microl, controls), triiodothyronine (T(3), 50 microg/kg body weight, hyperthyroid), and LH (ovine LH 10 microg/rat/day), respectively. Rats in group IV were made hypothyroid from postnatal Day 1 by adding 0.1% propylthiouracil (PTU) to their mother's drinking water. Testes of rats were collected at 7, 8, 9, 10, 11, 12, 16, and 21 days of age, fixed in Bouin's solution, and embedded in paraffin for immunocytochemical studies. Immunoexpression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and LH receptors (LHR) in testicular interstitial cells (other than the fetal Leydig cells) was observed using the avidin-biotin method. In control rats, out of all spindle-shaped cell types in the testis interstitium, only the peritubular mesenchymal cells showed positive immunolabeling for 3beta-HSD, beginning from the postnatal Day 11. However, positive immunolabeling for LHR was first detected in these cells at Day 12, i.e., after acquiring the steroidogenic enzyme activity. In T(3)-treated rats 3beta-HSD positive spindle-shaped cells were first observed at Day 9 (i.e., 2 days earlier than controls), and LHR-positive cells were first observed on Day 11 (2 days later than obtaining 3beta-HSD immunoactivity); they were exclusively the peritubular mesenchymal cells. The 3beta-HSD- and LHR-positive spindle-shaped cells were absent in the testis interstitium of LH-injected rats from Days 7 through 12 but were present at postnatal Day 16. In addition, more fetal Leydig cell clusters and fetal Leydig cells in mitosis were present in LH-treated rats compared to rats in all other treatment groups. Following their first detection, the number of positive cells for each protein continued to increase at each subsequent age in controls, T(3)-, and LH-injected groups. In PTU rats, 3beta-HSD and LHR-positive spindle-shaped cells were absent throughout the experimental period. From these observations, it is possible to suggest the following regarding the developing rat testis interstitium. 1) The precursor cells for the adult generation of Leydig cells in the postnatal rat testis are the peritubular mesenchymal cells. 2) Luteinizing hormone does not initiate the onset of mesenchymal cell differentiation into Leydig cells, instead it delays this process. However, daily LH treatment causes mitosis in fetal Leydig cells and increase in fetal Leydig cell clusters. 3) Thyroid hormone is critical to initiate the onset of mesenchymal cell differentiation into adult Leydig cells.  相似文献   

6.
Adult Leydig cells originate within the testis postnatally. Their formation is a continuous process involving gradual transformation of progenitors into the mature cell type. Despite the gradual nature of these changes, studies of proliferation, differentiation and steroidogenic function in the rat Leydig cell led to the recognition of three distinct developmental stages in the adult Leydig cell lineage: Leydig cell progenitors, immature Leydig cells and adult Leydig cells. In the first stage, Leydig cell progenitors arise from active proliferation of mesenchymal-like stem cells in the testicular interstitium during the third week of postnatal life and are recognizable by the presence of Leydig cell markers such as histochemical staining for 3β-hydroxysteroid dehydrogenase (3β-HSD) and the present of luteinizing hormone (LH) receptors. They proliferate actively and by day 28 postpartum differentiate into immature Leydig cells. In the second stage, immature Leydig cells are morphologically recognizable as Leydig cells. They have an abundant smooth endoplasmic reticulum and are steroidogenically active, but primarily produce 5-reduced androgens rather than testosterone. Immature Leydig cells divide only once, giving rise to the total adult Leydig cell population. In the third and final stage, adult Leydig cells are fully differentiated, primarily produce testosterone and rarely divide. LH and androgen act together to stimulate differentiation of Leydig cell progenitors into immature Leydig cells. Preliminary data indicate that insulin like growth factor-1 (IGF-1) acts subsequently in the transformation of immature Leydig cells into adult Leydig cells.  相似文献   

7.
Leydig cells of the adult rat testis differentiate postnatally from spindle-shaped cells in the testis interstitium during the neonatal-prepubertal period. Which spindle-shaped cell types are the precursor for Leydig cells and the stimulus for initiation of their differentiation are, however, two unresolved issues. In the present study, our objectives were to identify unequivocally which spindle-shaped cells are the precursors to Leydig cells and to test whether the initiation of their differentiation into Leydig cells depends on LH. Testes from fifteen groups of Sprague-Dawley rats (n = 4 per group) from 7-21 days of age were fixed in Bouin solution and embedded in paraffin. Immunoexpression of 3beta-hydroxysteroid dehydrogenase (3betaHSD), cytochrome P450 side-chain cleavage (P450(scc)), 17alpha-hydroxylase cytochrome P450 (P450(c17)), and LH receptors (LHR) in interstitial cells (other than fetal Leydig cells) was observed using the avidin biotin method. Of all spindle-shaped cell types in the testis interstitium, only the peritubular mesenchymal cells showed positive immunolabeling for all three steroidogenic enzymes, beginning from the 11th postnatal day. All three enzymes were expressed simultaneously in these cells, and their numbers increased significantly thereafter. Immunoexpression of LHR in a few of these cells was just evident for the first time on postnatal Day 12 (i.e., after acquiring the steroidogenic enzyme activity). Their numbers gradually increased with time. The number of immunolabeled cells per 1000 interstitial cells (excluding fetal Leydig cells and capillary endothelial cells) was not significantly different for the three steroidogenic enzymes tested at all ages; however, a lower value was observed for LHR at each time-point. Based on these observations, we suggest that 1) the precursor cell type for the adult generation of Leydig cells in the postnatal rat testis is the peritubular mesenchymal cells, 2) precursor cells acquire 3beta-HSD, P450(scc), and P450(c17) enzyme activity simultaneously during Leydig cell differentiation, and 3) onset of precursor cell differentiation during Leydig cell development does not depend on LH.  相似文献   

8.
This review is about the study of the testis Leydig cells formation and development in prenatal and postnatal periods. Leydig cells of testis are the main place of synthesis and secretion of androgens including testosterone--the main male sexual hormone. Testosterone plays an important role in male reproduction regulation. There are two types (two populations) of Leydig cells during ontogenesis. The first type is fetal Leydig cells, which appear and function in the prenatal masculinization period of the male urogenital system. Another type is adult Leydig cells, which originate during sexual maturation postnatally. Fetal and adult Leydig cells pass the same stages both in the prenatal and postnatal periods. They are Leydig cell progenitors, immature Leydig cells and adult Leydig cells.  相似文献   

9.
Developmental stages of fetal-type Leydig cells in prepubertal rats   总被引:2,自引:0,他引:2  
Fetal Leydig cells were studied in rats during and after the perinatal-neonatal period by comparing changes in morphology, number and volume with changes in testicular steroids and serum luteinizing hormone (LH) concentration. Stereologic examination indicated regression of fetal Leydig cells in testis by showing that their total volume as well as the average cell volume decreased between prenatal day 20 and postnatal day 3. The total number and total volume of cells both increased between postnatal days 3 and 11 but the average cell volume did not change during the same time period. Determination of serum LH showed a close correlation between an increase in LH concentration and increases in total number and volume of cells. The combined number of fetal- and adult-type Leydig cells on day 20 was more than 20 times the number of fetal cells at 3 days of age. Electron microscopic analysis showed that fetal Leydig cells after birth formed conspicuous clusters, which were surrounded by a layer of envelope cells and extracellular material. Occasional dividing fetal Leydig cells and possible precursors of fetal or adult Leydig cells were observed. Mitoses of spindle-shaped pericordal cells were frequent during the neonatal period. During and after the second postnatal week fetal Leydig cells again showed signs of regression, indicated by disintegration of the cell clusters, a decrease in cell size, accumulation of collagen between the cells and a decrease in steroid content per cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Leydig cells are the primary source of androgens in the mammalian testis. It is established that the luteinizing hormone (LH) produced by the anterior pituitary is required to maintain the structure and function of the Leydig cells in the postnatal testis. Until recent years, a role by the thyroid hormones on Leydig cells was not documented. It is evident now that thyroid hormones perform many functions in Leydig cells. For the process of postnatal Leydig cell differentiation, thyroid hormones are crucial. Thyroid hormones acutely stimulate Leydig cell steroidogenesis. Thyroid hormones cause proliferation of the cytoplasmic organelle peroxisome and stimulate the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; both peroxisomes and StAR are linked with the transport of cholesterol, the obligatory intermediate in steroid hormone biosynthesis, into mitochondria. The presence of thyroid hormone receptors in Leydig cells and other cell types of the Leydig lineage is an issue that needs to be fully addressed in future studies. As thyroid hormones regulate many functions of Sertoli cells and the Sertoli cells regulate certain functions of Leydig cells, effects of thyroid hormones on Leydig cells mediated via the Sertoli cells are also reviewed in this paper. Additionally, out of all cell types in the testis, the thyrotropin releasing hormone (TRH), TRH mRNA and TRH receptor are present exclusively in Leydig cells. However, whether Leydig cells have a regulatory role on the hypothalamo-pituitary-thyroid axis is currently unknown.  相似文献   

11.
Summary The concentration and distribution of glycogen in relation to postnatal differentiation of the mouse Leydig cell are studied by biochemical and ultrastructural methods. Glycogen decreases to less than one third in the first twelve days after birth. This decrease is accompanied by modifications of its distribution in the cytoplasm. In the newborn it is abundant and arranged in clusters of beta particles; in the mature Leydig cell, glycogen is found scattered in extremely low concentration interspersed among elements of the endoplasmic reticulum.The role of glycogen during Leydig cell differentiation can be interpreted as a source of energy and/or as a source of building material in the biogenesis of membranous components.This work was supported by Grant M 63,121 from the Population Council, U.S.A.Fellow Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina.  相似文献   

12.
Src family non-receptor tyrosine kinases are involved in signaling pathways which mediate cell growth, differentiation, transformation and tissue remodeling in various organs. In an effort to elucidate functional involvement of p60c-Src (c-Src) in spermatogenesis, the postnatal changes in c-src mRNA and c-Src protein together with kinase activity and subcellular localization were examined in mouse testes. c-src mRNA levels in testes increased during the first 2 weeks of postnatal development (PND). Following a decrease at puberty (PND 28), the c-src mRNA levels re-increased at adulthood (PND 50). Src kinase activity of testes was low at PND 7 but sharply increased prepubertally (PND 15) and highest at adulthood. Upon Western blotting, the level of c-Src protein was the highest in prepubertal testes but rather decreased in adult testes at PND 50. In adult testes, ubiquitination of c-Src proteins was apparent compared with immature one at PND 7, suggesting active turnover of c-Src by ubiquitination. In immature testes, c-Src immunoreactivity was largely found in the cytoplasm of the Sertoli cells. By contrast, in pubertal and adult testes intense immunoreactivity was localized at the adluminal and basal cytoplasm of Sertoli cells bearing elongated spermatids and early germ cells, respectively. The immunoreactivity of c-Src in the Leydig cells was increased during pubertal development, suggesting the functional involvement of c-Src in differentiated adult Leydig cells. Throughout postnatal development, some spermatogonia and spermatocytes showed intensive c-Src immunoreactivity compared with other germ cells, suggesting a possible role of c-Src in germ cell death. Taken together, it is suggested that c-Src may participate in the remodeling of the seminiferous epithelia and functional differentiation of Leydig cells during the postnatal development of mouse testes.  相似文献   

13.
Anti-Mullerian hormone (AMH) produced by the immature Sertoli cells negatively regulates the postnatal Leydig cell (i.e. adult Leydig cells/ALC) differentiation, however, the mechanism is sparsely understood. AMH negatively regulates the steroidogenic function of fetal Leydig cells (FLC) and ALC. However, when this function is established in the ALC lineage and whether AMH has a function in FLC in the postnatal testis are not known. Therefore, the objectives of this study were to examine the presence of AMH receptor type II (AMHR-II) in FLC and cells in the ALC lineage in the postnatal mammalian testis using the rat model Male Sprague Dawley rats of days 1, 5, 7-21, 28, 40, 60 and 90 were used. AMHR-II in testicular interstitial cells was detected in testis tissue using immunocytochemistry. Findings showed that the mesenchymal and the progenitor cells of the ALC lineage, were negative for AMHR-II. The newly formed ALC were the first cell type of the ALC lineage to show positive labeling for AMHR-II, and the first detection was on postnatal day 13, although they were present in the testis from day 10. From days 13-28, labeling intensity for AMHR-II in the ALC was much weaker than those at days 40-90. FLC were also positive. The time lag between the first detection of the newly formed ALC in the testis and the first detection of AMHR-II in them suggests that the establishment of the negative regulatory role of AMH on ALC steroidogenesis does not take place immediately upon their differentiation; no change in cell size occurs during this period. The absence of AMHR-II in mesenchymal cells suggests that it is unlikely that the negative regulatory effect of AMH on ALC differentiation in the postnatal testis is achieved via a direct action of AMH on mesenchymal cells. The presence of AMHR-II in postnatal FLC suggests a possible role by AMH on FLC, which warrants future investigations.  相似文献   

14.
The activity of the pituitary-adrenal system was studied in the Norway rats selected for both maintenance and elimination of the aggressive behavior towards man in the postnatal ontogeny. The selection of the wild rats for domesticated behavior was shown to result in changes of the pituitary-adrenal system formation in the postnatal ontogeny, which is indicated by differences in the dynamics of the adrenals weight as well as of corticosterone content in the blood plasma and in the adrenals both at rest and under stress conditions between the domesticated and aggressive rats.  相似文献   

15.
Progenitor cells of the testosterone-producing Leydig cells revealed   总被引:1,自引:0,他引:1  
The cells responsible for production of the male sex hormone testosterone, the Leydig cells of the testis, are post-mitotic cells with neuroendocrine characteristics. Their origin during ontogeny and regeneration processes is still a matter of debate. Here, we show that cells of testicular blood vessels, namely vascular smooth muscle cells and pericytes, are the progenitors of Leydig cells. Resembling stem cells of the nervous system, the Leydig cell progenitors are characterized by the expression of nestin. Using an in vivo model to induce and monitor the synchronized generation of a completely new Leydig cell population in adult rats, we demonstrate specific proliferation of vascular progenitors and their subsequent transdifferentiation into steroidogenic Leydig cells which, in addition, rapidly acquire neuronal and glial properties. These findings, shown to be representative also for ontogenetic Leydig cell formation and for the human testis, provide further evidence that cellular components of blood vessels can act as progenitor cells for organogenesis and repair.  相似文献   

16.
Effects of thyroid hormones on Leydig cells in the postnatal testis   总被引:4,自引:0,他引:4  
Thyroid hormones (TH) stimulate oxidative metabolism in many tissues in the body, but testis is not one of them. Therefore, in this sense, testis is not considered as a target organ for TH. However, recent findings clearly show that TH have significant functions on the testis in general, and Leydig cells in particular; this begins from the onset of their differentiation through aging. Some of these functions include triggering the Leydig stem cells to differentiate, producing increased numbers of Leydig cells during differentiation by causing proliferation of Leydig stem cells and progenitors, stimulation of the Leydig cell steroidogenic function and cellular maintenance. The mechanism of action of TH on Leydig cell differentiation is still not clear and needs to be determined in future studies. However, some information on the mechanisms of TH action on Leydig cell steroidogenesis is available. TH acutely stimulate testosterone production by the Leydig cells in vitro via stimulating the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; StAR is associated with intracellular trafficking of cholesterol into the mitochondria during steroid hormone synthesis. However, the presence and/or the types of TH receptors in Leydig cells and other cell types of the Leydig cell lineage is still to be resolved. Additionally, it has been shown that thyrotropin-releasing hormone (TRH), TRH receptor and TRH mRNA in the testis in many mammalian species are seen exclusively in Leydig cells. Although the significance of the latter observations are yet to be determined, these findings prompt whether hypothalamo-pituitary-thyroid axis and hypothalamo-pituitary-testis axis are short-looped through Leydig cells.  相似文献   

17.
The regulating effect of follicle-stimulating hormone (FSH) on Leydig cell function was studied using a model of immature porcine Leydig and Sertoli cells cultured in a hormone supplemented defined medium. FSH pretreatment for 2 days of Leydig cells cultured alone was with no effect. FSH pretreatment of Leydig cells cocultured with Sertoli cells increases Leydig cell activity in an FSH dose-dependent manner with a maximal effect observed at 50 ng/ml porcine FSH (pFSH). Leydig cells cultured for 2 days in conditioned medium (CM) by FSH stimulated (FSH-CM) Sertoli cells, as compared to CM by unstimulated (control) (C-CM) Sertoli cells show an increase of their activity with a maximal effect observed at 50 ng/ml pFSH. Leydig cells cultured in CM as compared to non CM, show a marked development of organelles (smooth endoplasmic reticulum and mitochondria) involved in the steroidogenic activity. The activity of FSH-CM as compared to C-CM on Leydig cell function was non dialyzable and trypsin sensitive. These data suggest that Sertoli cells exert a regulatory action on Leydig cell steroidogenic activity via FSH dependent secreted proteins.  相似文献   

18.

Background  

The initial steps of stem Leydig cell differentiation into steroid producing progenitor cells are thought to take place independent of luteinizing hormone (LH), under the influence of locally produced factors such as leukaemia inhibitory factor (LIF), platelet derived growth factor A and stem cell factor. For the formation of a normal sized Leydig cell population in the adult testis, the presence of LH appears to be essential.  相似文献   

19.
During testis development, fetal Leydig cells increase their population from a pool of progenitor cells rather than from proliferation of a differentiated cell population. However, the mechanism that regulates Leydig stem cell self-renewal and differentiation is unknown. Here, we show that blocking Notch signaling, by inhibiting gamma-secretase activity or deleting the downstream target gene Hairy/Enhancer-of-split 1, results in an increase in Leydig cells in the testis. By contrast, constitutively active Notch signaling in gonadal somatic progenitor cells causes a dramatic Leydig cell loss, associated with an increase in undifferentiated mesenchymal cells. These results indicate that active Notch signaling restricts fetal Leydig cell differentiation by promoting a progenitor cell fate. Germ cell loss and abnormal testis cord formation were observed in both gain- and loss-of-function gonads, suggesting that regulation of the Leydig/interstitial cell population is important for male germ cell survival and testis cord formation.  相似文献   

20.
Leydig cells develop inappropriately in animals lacking testicular macrophages. We have recently found that macrophages from adult animals produce 25-hydroxycholesterol, an oxysterol involved in the differentiation of hepatocytes and keratinocytes. Therefore, we hypothesized that testicular macrophages also produce 25-hydroxycholesterol during the early postnatal period and that this oxysterol plays a role in the differentiation of Leydig cells. We assessed the production of 25-hydroxycholesterol and 25-hydroxylase mRNA by cultured testicular macrophages from rats at 10, 20, and 40 days of age. We also tested the long-term effects of 25-hydroxycholesterol on basal and LH-stimulated testosterone production, and 3beta-hydroxysteroid dehydrogenase activity as end points of Leydig cell differentiation in vitro. We found that testicular macrophages from animals at all ages produced both 25-hydroxycholesterol and 25-hydroxylase mRNA, with macrophages from 10-day-old animals having the highest steady-state levels of message. We also found that chronic exposure of Leydig cells to 25-hydroxycholesterol increased basal production of testosterone but decreased LH-stimulated steroidogenesis at all ages. Finally, 25-hydroxycholesterol increased 3beta-hydroxysteroid dehydrogenase activity in both progenitor and immature Leydig cells. These findings support the hypothesis that testicular macrophages play an important role in the differentiation of Leydig cells through the secretion of 25-hydroxycholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号