首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To study the microbial communities in three sites contaminated with chlorinated pesticides and evaluation of dehydrodechlorinase (linA) gene variants involved in gamma‐hexachlorocyclohexane (γ‐HCH, lindane) degradation. Methods and Results: Using a culture‐independent method, 16S rRNA genes were amplified from microbial communities occurring in contaminated soils. From 375 clone libraries analysed, 55 different restriction fragment length polymorphism phylotypes were obtained. Dehydrodechlorinase (linA) gene, which initiates the γ‐HCH degradation, was directly amplified by PCR from the DNA extracted from soils. Deduced amino acid sequences of eight variant genotypes of linA showed few amino acid changes. All the variants of linA had mutations of F151L and S154T, and one of the genotype carried 12 amino acid changes when compared to a linA of Sphingomonas sp. reported from the same soil. Conclusions: The microbial communities displayed complex and diverse groups similar to bacteria involved in biodegradation. The presence of biodegradative genes like linA indicates the presence of communities with capacity to biodegrade the persistent pesticide HCH. Significance and Impact of the Study: This study provides insights to evaluate the presence of catabolic genes and assessing the bioremediation potential of the industrial soils contaminated by chlorinated pesticides.  相似文献   

2.
Abstract

Hexachlorocyclohexane (HCH), a highly chlorinated pesticide, was used worldwide in the 1950s and 1960s. HCH toxic residues are still detected in environmental compartments. Thus, effective, viable and eco-friendly strategy is required for its remediation. In this study, degradation of four HCH isomers was evaluated by amending contaminated soil using four treatments of spent mushroom compost (SMC) of Pleurotus ostraetus. The soil was incubated for 5 weeks and was sampled every seven days. Quantitative attenuation in HCH was calculated using gas chromatography–electron capture detector (GC-ECD) and metabolite was identified using gas chromatography–mass selective detector (GC-MSD). Maximum reduction 58%, 26%, 45%, and 64% for α-, β-, γ- and δ-HCH isomers, respectively, using SMC and soil (both unsterilized) showed that this treatment was the best for bioremediation of HCH in soil. However, when one of the factors, either soil or SMC, was sterilized, a significant reduction in HCH degradation was noticed. The second most reduction of isomers was seen during treatment where unsterilized SMC was added in sterilized soil followed by treatment where SMC was sterilized but soil was not. Abiotic control did not remove any significant quantities of HCH. Simple first-order (SFO) kinetic confirmed that SMC reduced the half-live manifolds as compared to biotic control. Only one metabolite δ-PCCH was identified during the course of study.  相似文献   

3.
AIM: To isolate gamma-hexachlorocyclohexane (HCH)-degrading bacteria from contaminated soil and characterize the metabolites formed and the genes involved in the degradation pathway. METHODS AND RESULTS: A bacterial strain Xanthomonas sp. ICH12, capable of biodegrading gamma- HCH was isolated from HCH-contaminated soil. DNA-colony hybridization method was employed to detect bacterial populations containing specific gene sequences of the gamma-HCH degradation pathway. linA (dehydrodehalogenase), linB (hydrolytic dehalogenase) and linC (dehydrogenase) from a Sphingomonas paucimobilis UT26, reportedly possessing gamma-HCH degradation activity, were used as gene probes against isolated colonies. The isolate was found to grow and utilize gamma-HCH as the sole carbon and energy source. The 16S ribosomal RNA gene sequence of the isolate resulted in its identification as a Xanthomonas species, and we designated it as strain ICH12. During the degradation of gamma-HCH by ICH12, formation of two intermediates, gamma-2,3,4,5,6-pentachlorocyclohexene (gamma-PCCH), and 2,5-dichlorobenzoquinone (2,5-DCBQ), were identified by gas chromatography-mass spectrometric (GC-MS) analysis. While gamma-PCCH was reported previously, 2,5-dichlorohydroquinone was a novel metabolite from HCH degradation. CONCLUSIONS: A Xanthomonas sp. for gamma-HCH degradation from a contaminated soil was isolated. gamma-HCH was utilized as sole source of carbon and energy, and the degradation proceeds by successive dechlorination. Two degradation products gamma-PCCH and 2,5-DCBQ were characterized, and the latter metabolite was not known in contrasts with the previous studies. The present work, for the first time, demonstrates the potential of a Xanthomonas species to degrade a recalcitrant and widespread pollutant like gamma-HCH. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the isolation and characterization of a novel HCH-degrading bacterium. Further results provide an insight into the novel degradation pathway which may exist in diverse HCH-degrading bacteria in contaminated soils leading to bioremediation of gamma-HCH.  相似文献   

4.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

5.
Two forms of hexachlorocyclohexane (HCH), gamma-HCH (lindane) and technical HCH (incorporating alpha-, beta-, gamma- and delta- isomers), have been used against agricultural pests and in health programs since the 1940s. Although all the isomers are present in the milieu, delta- and beta-HCH isomers are the most problematic and present a serious environmental problem. Bacteria that degrade HCH isomers have been isolated from HCH contaminated soils from different geographical locations around the world (from the family Sphingomonadaceae). Interestingly, all these bacteria contain nearly identical lin genes (responsible for HCH degradation), which are diverging to perform several catabolic functions. The organization and diversity of lin genes have been studied among several sphingomonads, and they have been found to be associated with plasmids and IS6100, both of which appear to have a significant role in their horizontal transfer. The knowledge of the molecular genetics, diversity and distribution of lin genes, and the potential of sphingomonads to degrade HCH isomers, can now be used for developing bioremediation techniques for the decontamination of HCH contaminated sites.  相似文献   

6.
We used a two‐step enrichment approach to isolate root‐colonizing hexachlorocyclohexane (HCH)‐degrading microorganisms. The first step consists of the use of classical liquid enrichment to isolate γ‐HCH degraders. The γ‐HCH‐degrading microbes were attached in mass to corn seeds sown in soil with γ‐HCH, and after plant development we rescued bacteria growing on root tips. Bacteria were then subjected to a second enrichment round in which growth on liquid medium with γ‐HCH and inoculation of corn seeds were repeated. We then isolated bacteria on M9 minimal medium with γ‐HCH from root tips. We were able to isolate four Sphingomonas strains, all of which degraded α‐, β‐, γ‐ and δ‐HCH. Two of the strains were particularly good colonizers of corn roots, reaching high cell density in vegetated soil and partly removing γ‐HCH. In contrast, these bacteria performed poorly in unplanted soils. This study supports the hypothesis that the removal of persistent toxic chemicals can be accelerated by combinations of plants and bacteria, a process generally known as rhizoremediation.  相似文献   

7.
A gram-positive Microbacterium sp. strain, ITRC1, that was able to degrade the persistent and toxic hexachlorocyclohexane (HCH) isomers was isolated and characterized. The ITRC1 strain has the capacity to degrade all four major isomers of HCH present in both liquid cultures and aged contaminated soil. DNA fragments corresponding to the two initial genes involved in γ-HCH degradative pathway, encoding enzymes for γ-pentachlorocyclohexene hydrolytic dehalogenase (linB) and a 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase (linC), were amplified by PCR and sequenced. Their presence in the ITRC1 genomic DNA was also confirmed by Southern hybridization. Sequencing of the amplified DNA fragment revealed that the two genes present in the ITRC1 strain were homologous to those present in Sphingomonas paucimobilis UT26. Both 16S rRNA sequencing and phylogenetic analysis resulted in the identification of the bacteria as a Microbacterium sp. We assume that these HCH-degrading bacteria evolved independently but possessed genes similar to S. paucimobilis UT26. The reported results indicate that catabolic genes for γ-HCH degradation are highly conserved in diverse genera of bacteria, including the gram-positive groups, occurring in various environmental conditions.  相似文献   

8.
A γ-hexachlorocyclohexane (HCH)-degrading bacterium, Sphingomonas sp. MM-1, was isolated from soil contaminated with HCH isomers. Cultivation of MM-1 in the presence of γ-HCH led to the detection of five γ-HCH metabolites, γ-pentachlorocyclohexene, 2,5-dichloro-2,5-cyclohexadiene-1,4-diol, 2,5-dichlorohydroquinone, 1,2,4-trichlorobenzene, and 2,5-dichlorophenol, strongly suggesting that MM-1 has the lin genes for γ-HCH degradation originally identified in the well-studied γ-HCH-degrading strain Sphingobium japonicum UT26. Southern blot, PCR amplification, and sequencing analyses indicated that MM-1 has seven lin genes for the conversion of γ-HCH to β-ketoadipate (six structural genes, linA to linF, and one regulatory gene, linR). MM-1 carried four plasmids, of 200, 50, 40, and 30 kb. Southern blot analysis revealed that all seven lin genes were dispersed across three of the four plasmids, and that IS6100, often found close to the lin genes, was present on all four plasmids.  相似文献   

9.
Although the production and use of technical hexachlorocyclohexane (HCH) and lindane (the purified insecticidal isomer γ‐HCH) are prohibited in most countries, residual concentrations still constitute an immense environmental burden. Many studies describe the mineralization of γ‐HCH by bacterial strains under aerobic conditions. However, the metabolic fate of the other HCH isomers is not well known. In this study, we investigated the transformation of α‐, β‐, γ‐, δ‐, ε‐HCH, and a heptachlorocyclohexane isomer in the presence of varying ratios of the two enzymes that initiate γ‐HCH degradation, a dehydrochlorinase (LinA) and a haloalkane dehalogenase (LinB). Each substrate yielded a unique metabolic profile that was strongly dependent on the enzyme ratio. Comparison of these results to those of in vivo experiments with different bacterial isolates showed that HCH transformation in the tested strains was highly optimized towards productive metabolism of γ‐HCH and that under these conditions other HCH‐isomers were metabolized to mixtures of dehydrochlorinated and hydroxylated side‐products. In view of these results, bioremediation efforts need very careful planning and toxicities of accumulating metabolites need to be evaluated.  相似文献   

10.
Aims: To isolate a biosurfactant (BS)‐producing bacterium, to characterize the BS properties and to evaluate its ability to enhance pesticide solubilization for further application in environmental remediation. Methods and Results: Five BS‐producing bacteria were isolated from fuel oil‐contaminated soil. Among them, Burkholderia cenocepacia BSP3 exhibited the highest emulsification index and was chosen for further study. Glucose‐containing medium supplemented with nitrate or sunflower seed oil provided suitable conditions for growth and BS production. The BS was identified as a glucolipid, having a critical micelle concentration (CMC) of 316 mg l?1. It could lower the surface tension of deionized water to 25 ± 0·2 mN m?1 and exhibited good emulsion stability. Finally, the application of the BS to facilitate pesticide solubilization demonstrated that this BS at the concentration below and above its CMC could enhance the apparent water solubility of three pesticides, i.e. methyl parathion, ethyl parathion and trifluralin. Conclusions: Burkholderia cenocepacia BSP3 is a BS‐producing bacterium isolated from oil‐contaminated soil. The BS was identified as a glucolipid having a molecular mass of 550·4 g mol?1. An apparent yield of the BS was 6·5 ± 0·7 g l?1. This glucolipid‐type BS noticeably enhanced pesticide solubilization suggesting its role in environmental remediation. Significance and Impact of the Study: A glucolipid type BS normally found in marine micro‐organisms was isolated from a soil‐bacterium. Due to its surface active properties and good performance in enhancement of pesticide solubilization, it could be used as a solubilizing agent for environmental remediation and synergistic treatment with bioremediation of pesticide‐contaminated soil.  相似文献   

11.
A bacterium capable of utilizing p-cresol as sole source of carbon and energy was isolated from soil and identified as a Bacillus species. The organism also utilized phenol, o-cresol, m-cresol, 4-hydroxybenzoic acid, and gentisic acid as growth substrates. The organism degraded p-cresol to 4-hydroxybenzoic acid, which was further metabolized by a gentisate pathway, as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extract. Such a bacterial strain can be used for bioremediation of environments contaminated with phenolic compounds.  相似文献   

12.
六六六(HCH)降解菌Sphingomonas sp. BHC-A的分离与降解特性的研究   总被引:11,自引:0,他引:11  
从长期受六六六污染的土壤中分离得到一株能以HCH为唯一碳源的高效降解菌株BHC-A。通过对其主要生理生化特征分析,以及16S rDNA序列的测定和同源性比较分析,将BHC-A鉴定为鞘氨醇单胞菌属(Sphingomonassp.)。BHC-A菌株在12h以内能够完全矿化浓度分别为5mg/L的α-、β-、γ-、δ-HCH4种异构体,特别是对β-HCH的降解在国际上也属少例。而前人所报道的γ-HCH降解菌Sphingomonas paucimobilisUT26菌株对β-HCH和δ-HCH不产生降解作用,即使经过24h的培养,对5mg/L的α-HCH的降解率也只有12.6%。在黄瓜的盆钵试验中发现,15d后BHC-A在土壤中对α、β-、γ-、δ-HCH4种异构体的降解率为84.3%,能够有效地消除土壤中六六六的污染,缓解植株受药害症状。  相似文献   

13.
Environmental biodegradation of several chlorinated pesticides is limited by their low solubility and sorption to soil surfaces. To mitigate this problem we quantified the effect of three biosurfactant viz., rhamnolipid, sophorolipid and trehalose-containing lipid on the dissolution, bioavailability, and biodegradation of HCH-isomers in liquid culture and in contaminated soil. The effect of biosurfactants was evaluated through the critical micelle concentration (CMC) value as determined for each isomer. The surfactant increased the solubilization of HCH isomers by 3-9 folds with rhamnolipid and sophorolipid being more effective and showing maximum solubilization of HCH isomers at 40 μg/mL, compared to trehalose-containing lipid showing peak solubilization at 60 μg/mL. The degradation of HCH isomers by Sphingomonas sp. NM05 in surfactant-amended liquid mineral salts medium showed 30% enhancement in 2 days as compared to degradation in 10 days in the absence of surfactant. HCH-spiked soil slurry incubated with surfactant also showed around 30-50% enhanced degradation of HCH which was comparable to the corresponding batch culture experiments. Among the three surfactants, sophorolipid offered highest solubilization and enhanced degradation of HCH isomers both in liquid medium and soil culture. The results of this study suggest the effectiveness of surfactants in improving HCH degradation by increased bioaccessibility.  相似文献   

14.
The organochlorine 1,2,3,4,5,6 hexachlorocyclohexane (HCH) is a broad-spectrum insecticide that was used on a large-scale worldwide. The soil–plant–microbe system and its influence on HCH biodegradation are evaluated. A greenhouse experiment was designed to evaluate HCH dissipation and several microbial parameters among rhizosphere and bulk soil of two contrasting plants, Cytisus striatus (Hill) Rothm and Holcus lanatus L. Plants were grown for 180 days in three treatments: uncontaminated soil (control), uncontaminated soil inoculated with soil (3% w/w) from a HCH-contaminated site (INOC), and uncontaminated soil inoculated with soil (3% w/w) from the HCH-contaminated site and artificially contaminated to obtain 100 mg HCH kg−1 dry soil (100HCH-INOC). At harvest, plant biomass, soil water-extractable organic C, pH and Cl concentration, rhizosphere microbial densities (total heterotrophs, ammonifiers, amylolytics) and C substrate utilization patterns, and degradation of α-, β-, δ- and γ-HCH isomers were determined in bulk and rhizosphere soils. Soil solution Cl concentration was determined every 30 days throughout the entire growth period. Results demonstrate that both Cytisus striatus and Holcus lanatus can grow in soils with up to 100 mg HCH kg−1. An enhanced degradation of α-HCH, but not β- or δ-HCH, was observed in the rhizosphere. Significant changes in the microbial densities were observed between bulk and rhizosphere soils of Cytisus, and an increase in C source utilization indicated changes in community level physiological profiles (CLPP) in the rhizosphere of this species when grown in contaminated soils. HCH dissipation was also greater in soils planted with this species. In accordance, increases in soil extractable C, Cl concentration and acidity were greater at the rhizosphere of Cytisus. Concentration of Cl in soil solutions also indicates greater HCH dechlorination in soils planted with Cytisus than Holcus. Results suggest that phytostimulation of bacteria present or added to soil is a promising approach to cleaning HCH-contaminated sites, and especially for biodegradation of α-HCH.  相似文献   

15.
Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties.  相似文献   

16.
An aerobic Gram-negative bacterium identified as Pseudomonas vesicularis was isolated from soil contaminated with 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB). This bacterium used TNB as the sole source of nitrogen. The TNB was metabolized within 80 h of incubation. The major metabolites produced were dinitroaniline, dinitrobenzene (DNB), nitroaniline, nitrobenzene (NB), and ammonia. The concentrations of DNB and NB produced in the culture medium were nearly stoichiometric. The ammonia concentration in the culture medium increased during the course of incubation. The end product of TNB metabolism was NB, which did not undergo further degradation even after long incubation time. This bacterium could be used in a syntrophic culture system with other NB-degrading bacteria to remove TNB completely from soil and water at contaminated sites. Received: 25 July 1996 / Accepted: 10 September 1996  相似文献   

17.
To determine whether the diversity of phenanthrene‐degrading bacteria in an aged polycyclic aromatic hydrocarbon (PAH) contaminated soil is affected by the addition of plant root exudates, DNA stable isotope probing (SIP) was used. Microcosms of soil with and without addition of ryegrass exudates and with 13C‐labelled phenanthrene (PHE) were monitored over 12 days. PHE degradation was slightly delayed in the presence of added exudate after 4 days of incubation. After 12 days, 68% of added PHE disappeared both with and without exudate. Carbon balance using isotopic analyses indicated that a part of the 13C‐PHE was not totally mineralized as 13CO2 but unidentified 13C‐compounds (i.e. 13C‐PHE or 13C‐labelled metabolites) were trapped into the soil matrix. Temporal thermal gradient gel electrophoresis (TTGE) analyses of 16S rRNA genes were performed on recovered 13C‐enriched DNA fractions. 16S rRNA gene banding showed the impact of root exudates on diversity of PHE‐degrading bacteria. With PHE as a fresh sole carbon source, Pseudoxanthomonas sp. and Microbacterium sp. were the major PHE degraders, while in the presence of exudates, Pseudomonas sp. and Arthrobacter sp. were favoured. These two different PHE‐degrading bacterial populations were also distinguished through detection of PAH‐ring hydroxylating dioxygenase (PAH‐RHDα) genes by real‐time PCR. Root exudates favoured the development of a higher diversity of bacteria and increased the abundance of bacteria containing known PAH‐RHDα genes.  相似文献   

18.
Phenol and its derivatives are one of the largest groups of environmental pollutants due to their presence in many industrial effluents and broad application as antibacterial and antifungal agents. A number of microbial species possess enzyme systems that are applicable for the decomposition of various aliphatic and aromatic toxic compounds. Intensive efforts to screen species with high‐degradation activity are needed to study their capabilities of degrading phenol and phenolic derivatives. Most of the current research has been directed at the isolation and study of microbial species of potential ecological significance. In this review, some of the best achievements in degrading phenolic compounds by bacteria and yeasts are presented, which draws attention to the high efficiency of strains of Pseudomonas, Candida tropicalis, Trichosporon cutaneum, etc. The unique ability of fungi to maintain their degradation potential under conditions unfavorable for other microorganisms is outstanding. Mathematical models of the microbial biodegradation dynamics of single and mixed aromatic compounds, which direct to the benefit of the processes studied in optimization of modern environmental biotechnology are also presented.  相似文献   

19.
Transplacental transfer of chlorinated hydrocarbons such as PCBs, DDT compounds, HCH isomers and HCB was determined in a pregnant striped dolphin just before parturition. The transfer rates of chlorinated hydrocarbons in the striped dolphin through parturition were estimated as follows: PCBs 4.0%, ΣDDT 4.7%, ΣHCH 8.9% and HCB 9.4%. The concentration ratios of chlorinated hydrocarbons in the blubber of the fetus to that of the mother dolphin were found to be in the order of HCB > HCH isomers > DDT compounds > PCBs. Especially in PCB congeners, these ratios gradually decreased with the increase of chlorine atoms substituted in biphenyls.

These observations indicate that the more lipophilic chemicals, such as higher chlorinated biphenyls and DDT compounds, are less transferable from mother to fetus. The transfer characteristics of chlorinated hydrocarbons can be explained by their equilibrium partitionings between blood and blubber, resulting from the differences of lipid compositions in each.  相似文献   

20.
The possibility of biologically detoxifying a contaminated soil from an Italian dump site containing about 1500 mg/kg (in dry soil) of polychlorinated biphenyls was studied in the laboratory in this work. The soil, which contained indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids at concentration of about 300 CFU per g of air‐dried soil, was amended with inorganic nutrients, saturated with water and treated in aerobic 3‐L batch slurry reactors (soil suspension at 20% w/v). Either Pseudomonas sp. CPE1 strain, capable of cometabolising low‐chlorinated biphenyls into chlorobenzoic acids, or a bacterial co‐culture capable of aerobically dechlorinating polychlorobiphenyls constituted by this bacterium and the two chlorobenzoic acid degrading bacteria Pseudomonas sp. CPE2 strain and Alcaligenes sp. CPE3 strain, were used as inocula (final concentration of about 108 CFU/mL for each bacterium), in the absence and in the presence of biphenyl (4 g/kg of air dried soil). Significant soil polychlorobiphenyl depletions were observed in all the reactors after 119 days of treatment. The soil inoculation with the sole CPE1 was found to slightly enhance the polychlorobiphenyl depletions (about 20%) and the soil detoxification; the effect was higher in the presence of biphenyl. The use of the polychlorobiphenyl mineralising bacterial co‐culture as inoculum resulted in a strong enhancement of the depletions of both the soil polychlorobiphenyls (from 50 to 65%) and of the original soil ecotoxicity. The bacterial biomass inoculated was found to implant into the soil; the higher specialised biomass availability thus reached in the inoculated soil was probably responsible of a more extensive biodegradation of polychlorobiphenyls and therefore of the higher detoxification yields observed in the inoculated reactors. The soil ecotoxicity, measured through two different soil contact assays, i.e., the Lepidium sativum germination test and the Collembola mortality test, was often found to decrease proportionally with the soil polychlorobiphenyl concentration. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 240–249, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号