首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Lymphotoxin beta receptor (LTbetaR)-induced activation of NF-kappaB in mouse embryo fibroblasts was mediated by the classical pathway and by an alternative or second pathway. The classical pathway involved the IkappaB kinase (IKK)beta- and IKKgamma-dependent degradation of IkappaBalpha and resulted in the rapid but transient activation of primarily RelA-containing NF-kappaB dimers. The alternative or second pathway proceeded via NF-kappaB-inducing kinase (NIK)-, IKKalpha-, and protein synthesis-dependent processing of the inhibitory NF-kappaB2 p100 precursor protein to the p52 form and resulted in a delayed but sustained activation of primarily RelB-containing NF-kappaB dimers. This second pathway was independent of the classical IKK complex, which is governed by its central IKKgamma regulatory subunit. The sequential engagement of two distinct pathways, coupled with the negative feedback inhibition of RelA complexes by NF-kappaB-induced resynthesis of IkappaBalpha, resulted in a pronounced temporal change in the nature of the NF-kappaB activity during the course of stimulation. Initially dominant RelA complexes were replaced with time by RelB complexes. Therefore, the alternative activation path mediated by processing of p100 was necessary for sustained NF-kappaB activity in mouse embryo fibroblasts in response to LTbetaR stimulation. Based on the phenotype of mice deficient in various components of the LTbetaR-induced activation of p100 processing, we conclude that this pathway is critically involved in the function of stromal cells during the generation of secondary lymphoid organ microarchitectures.  相似文献   

6.
Respiratory syncytial virus (RSV) infection of airway epithelial cells results in persistent NF-kappaB activation and NF-kappaB-mediated interleukin-8 production. Previous studies in airway epithelial cells demonstrated that tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB activation is transient due to regulation by IkappaBalpha. However, during RSV infection, IkappaBalpha has only a partial inhibitory effect on NF-kappaB activation. Studies presented here demonstrate that neither increased IkappaBalpha production which occurs as a result of RSV-induced NF-kappaB activation nor inhibition of proteasome-mediated IkappaBalpha degradation results in a reversal of RSV-induced NF-kappaB activation. Thus, while manipulation of IkappaBalpha results in reversal of TNF-alpha-induced NF-kappaB activation, manipulation of IkappaBalpha does not result in a reversal of RSV-induced NF-kappaB activation.  相似文献   

7.
Hu X 《Cytokine》2003,21(6):286-294
Following binding its death receptor on the plasma membrane, tumor necrosis factor (TNF) induces the receptor trimerization and recruits a number of death domain-containing molecules to form the receptor complex. The complex promotes activation of downstream caspase cascade and induces degradation of IkappaBalpha. Caspases are activated using mechanisms of oligomeration and 'self-controlled proteolysis'. According to their structures and functions, apoptosis related caspases can be divided into upstream and downstream caspases. In general, upstream caspases cleave and activate downstream caspases by proteolysis of the Asp-X site. Activated caspases then cleaved target substrates. To date, more than 70 proteins have been identified to be substrates of caspases in mammalian cells. Caspases can alter the function of their target proteins by destroying structural components of the cytoskeleton and nuclear scaffold or by removing their regulatory domains. Activation of NF-kappaB is dependent on the degradation of IkappaBalpha. IkappaB kinase (IKK) phosphorylates IkappaBalpha at the residues 32 and 36 followed by polyubiquitination at lysine 21 and 22 and subsequent degradation of the molecules by 26S proteasome. There is extensive crosstalk between the apoptotic and NF-kappaB signaling pathways that emanate from TNF-R1. On the one hand, activation of NF-kappaB can inactivate caspases; on the other hand, activated caspases can inhibit the activation of NF-kappaB. Both processes involve in proteolysis. This crosstalk may be important for maintaining the balance between the two pathways and for determining whether a cell should live or die.  相似文献   

8.
9.
We previously reported that several stresses can induce cytokine-induced neutrophil chemoattractant expression in a nuclear factor kappaB (NF-kappaB)-dependent manner. In this study, we focused further on the regulation of NF-kappaB. The activation of NF-kappaB and the subsequent cytokine-induced neutrophil chemoattractant induction in response to interleukin-1beta (IL-1beta) were inhibited by proteasome inhibitors, MG132 and proteasome inhibitor I. Translocation of NF-kappaB into nuclei occurs by the phosphorylation, multi-ubiquitination, and degradation of IkappaBalpha, a regulatory protein of NF-kappaB. Nascent IkappaBalpha began to degrade 5 min after treatment with IL-1beta and disappeared completely after 15 min. However, IkappaBalpha returned to basal levels after 45-60 min. Interestingly, resynthesized IkappaBalpha was already phosphorylated at Ser-32. These results suggest that 1) the upstream signals are still activated, although the translocation of NF-kappaB peaks at 15 min; and 2) the regulated protein(s) acts downstream of IkappaBalpha phosphorylation. Western blotting showed that the resynthesized and phosphorylated IkappaB molecules were also upward-shifted by multi-ubiquitination in response to IL-1beta treatment. On the other hand, ATP-dependent Leu-Leu-Val-Tyr cleaving activity transiently increased, peaked at 15 min, and then decreased to basal levels at 60 min. Furthermore, the cytosolic fraction that was stimulated by IL-1beta for 15 min, but not for 0 and 60 min, could degrade phosphorylated and multi-ubiquitinated IkappaBalpha. These results indicate that the transient translocation of NF-kappaB in response to IL-1beta may be partly dependent on transient proteasome activation.  相似文献   

10.
Human monocytes and macrophages are persistent reservoirs of human immunodeficiency virus (HIV) type-1. Persistent HIV infection of these cells results in increased levels of NF-kappaB in the nucleus secondary to increased IkappaBalpha, IkappaBbeta, and IkappaBepsilon degradation, a mechanism postulated to regulate viral persistence. To characterize the molecular mechanisms regulating HIV-mediated degradation of IkappaB, we have sought to identify the regulatory domains of IkappaBalpha targeted by HIV infection. Using monocytic cells stably expressing different transdominant molecules of IkappaBalpha, we determined that persistent HIV infection of these cells targets the NH2 but not the COOH terminus of IkappaBalpha. Further analysis demonstrated that phosphorylation at S32 and S36 is necessary for HIV-dependent IkappaBalpha degradation and NF-kappaB activation. Of the putative N-terminal IkappaBalpha kinases, we demonstrated that the Ikappakappa complex, but not p90(rsk), is activated by HIV infection and mediates HIV-dependent NF-kappaB activation. Analysis of viral replication in cells that constitutively express IkappaBalpha negative transdominant molecules demonstrated a lack of correlation between virus-induced NF-kappaB (p65/p50) nuclear translocation and degree of viral persistence in human monocytes.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Melanoma differentiation-associated gene-7 (mda-7), also referred to as IL-24, is a novel growth regulatory cytokine that has been shown to regulate the immune system by inducing the expression of inflammatory cytokines, such as TNF, IL-1, and IL-6. Whether the induction of these cytokines by MDA-7 is mediated through activation of NF-kappaB or whether it regulates cytokine signaling is not known. In the present report we investigated the effect of MDA-7 on NF-kappaB activation and on TNF-induced NF-kappaB activation and apoptosis in human embryonic kidney 293 cells. Stable or transient transfection with mda-7 into 293 cells failed to activate NF-kappaB. However, TNF-induced NF-kappaB activation was significantly enhanced in mda-7-transfected cells, as indicated by DNA binding, p65 translocation, and NF-kappaB-dependent reporter gene expression. Mda-7 transfection also potentiated NF-kappaB reporter activation induced by TNF receptor-associated death domain and TNF receptor-associated factor-2. Cytoplasmic MDA-7 with deleted signal sequence was as effective as full-length MDA-7 in potentiating TNF-induced NF-kappaB reporter activity. Secretion of MDA-7 was not required for the potentiation of TNF-induced NF-kappaB activation. TNF-induced expression of the NF-kappaB-regulated gene products cyclin D1 and cyclooxygenase-2, were significantly up-regulated by stable expression of MDA-7. Furthermore, MDA-7 expression abolished TNF-induced apoptosis, and suppression of NF-kappaB by IkappaBalpha kinase inhibitors enhanced apoptosis. Overall, our results indicate that stable or transient MDA-7 expression alone does not substantially activate NF-kappaB, but potentiates TNF-induced NF-kappaB activation and NF-kappaB-regulated gene expression. Potentiation of NF-kappaB survival signaling by MDA-7 inhibits TNF-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号