首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract: Microtubule-associated protein (MAP) binding to assembled microtubules (MTs) can be reduced by the addition of polyglutamate without significant MT depolymerization or interference with MT elongation reactions. Ensuing polymer length redistribution in MAP-depleted MTs occurs on a time scale characteristic of that observed with MAP-free MTs. The redistribution phase occurs even in the absence of mechanical shearing and without appreciable effects from end-to-end annealing, as indicated by the time course of incremental changes in polymer length and MT number concentration. We also observed higher rates of MT length redistribution when the [MAP]/[tubulin] ratio was decreased. Together, these results demonstrate that MT length redistribution rates are greatly influenced by MAP content, and the data are compatible with the dynamic instability model. We also found that a peptide analogue corresponding to the second repeated sequence in the MT-binding region of MAP-2 can also markedly retard MT length redistribution kinetics, a finding that accords with the ability of this peptide to promote tubulin polymerization in the absence of MAPs and to displace MAP-2 from MTs. These results provide further evidence that MAPs can modulate MT assembly/disassembly dynamics and that peptide analogues can mimic the action of intact MAPs without the need for three contiguous repeated sequences in the MT-binding region.  相似文献   

2.
A method for biochemically isolating microtubule-associated proteins (MAPs) from the detergent-extracted cytoskeletons of carrot suspension cells has been devised. The advantage of cytoskeletons is that filamentous proteins are enriched and separated from vacuolar contents. Depolymerization of cytoskeletal microtubules with calcium at 4°C releases MAPs which are then isolated by association with taxol stabilized neurotubules. Stripped from microtubules (MTs) by salt, then dialysed, the resulting fraction contains a limited number of high molecular weight proteins. Turbidimetric assays demonstrate that this MAP fraction stimulates polymerization of tubulin at concentrations at which it does not self-assemble. By adding it to rhodamine-conjugated tubulin, the fraction can be seen to form radiating arrays of long filaments, unlike MTs induced by taxol. In the electron microscope, these arrays are seen to be composed of mainly single microtubules. Blot-affinity purified antibodies confirm that two of the proteins decorate cellular microtubules and fulfil the criteria for MAPs. Antibodies to an antigenically related triplet of proteins about 60–68 kDa (MAP 65) stain interphase, preprophase band, spindle and phragmoplast microtubules. Antibodies to the 120 kDa MAP also stain all of the MT arrays but labelling of the cortical MTs is more punctate and, unlike anti-MAP 65, the nuclear periphery is also stained. Both the anti-65 kDa and the anti-120 kDa antibodies stain cortical MTs in detergent-extracted, substrate-attached plasma membrane disks ('footprints'). Since the 120 kDa protein is detected at two surfaces (nucleus and plasma membrane) known to support MT growth in plants, it is hypothesized that it may function there in the attachment or nucleation of MTs.  相似文献   

3.
A variety of microtubule-associated proteins (MAPs) have been reported in higher plants. Microtubule (MT) polymerization starts from the γ-tubulin complex (γTuC), a component of the MT nucleation site. MAP200/MOR1 and katanin regulate the length of the MT by promoting the dynamic instability of MTs and cutting MTs, respectively. In construction of different MT structures, MTs are bundled or are associated with other components—actin filaments, the plasma membrane, and organelles. The MAP65 family and some of kinesin family are important in bundling MTs. MT plus-end-tracking proteins (+TIPs) including end-binding protein 1 (EB1), Arabidopsis thaliana kinesin 5 (ATK5), and SPIRAL 1 (SPR1) localize to the plus end of MTs. It has been suggested that +TIPs are involved in binding of MT to other structures. Phospholipase D (PLD) is a possible candidate responsible for binding of MTs to the plasma membrane. Many candidates have been reported as actin-binding MAPs, for example calponin-homology domain (KCH) family kinesin, kinesin-like calmodulin-binding protein (KCBP), and MAP190. RNA distribution and translation depends on MT structures, and several RNA-related MAPs have been reported. This article gives an overview of predicted roles of these MAPs in higher plants.  相似文献   

4.
The use of a panel of monoclonal antibodies (mAbs) directed against different determinants of microtubule-associated protein 2 (MAP2) enabled us to identify two distinct high-molecular-mass MAP2 species (270 and 250 kDa) and a substantial amount of MAP2c (70 kDa) in human neuroblastoma cells. The 250-kDa MAP2 species appears to be confined to the human neuroblastoma cells and was not observed in microtubules (MTs) from bovine and rat brain, mouse neuroblastoma, or MTs from human cerebellum. A new overlay method was developed, which demonstrates binding of tubulin to human neuroblastoma high-molecular-mass MAP2 by exposing nitrocellulose-bound MT proteins under polymerization conditions to tubulin. Bound tubulin was detected with a mAb directed against beta-tubulin. The binding of tubulin to MAP2 could be abolished by a peptide homologous to positions 426-445 of the C-terminal region of beta-tubulin. Immunological cross-reactivity with several mAbs directed against bovine brain MAP2, taxol-promoted coassembly into MTs, and immunocytochemical visualization within cells were further criteria utilized to characterize these proteins as true MAPs. Indirect immunofluorescence with anti-MAP2 and anti-beta-tubulin mAbs demonstrated that there is a change in the spatial organization of MTs during induced cell differentiation, as indicated by the appearance of MT bundles and the redistribution of MAP2.  相似文献   

5.
Microtubules (MTs) are polymers of alpha and beta tubulin dimers that mediate many cellular functions, including the establishment and maintenance of cell shape. The dynamic properties of MTs may be influenced by tubulin isotype, posttranslational modifications of tubulin, and interaction with microtubule-associated proteins (MAPs). End-binding (EB) family proteins affect MT dynamics by stabilizing MTs, and are the only MAPs reported that bind MTs via a calponin-homology (CH) domain (J Biol Chem 278 (2003) 49721-49731; J Cell Biol 149 (2000) 761-766). Here, we describe a novel 27 kDa protein identified from an inner ear organ of Corti library. Structural homology modeling demonstrates a CH domain in this protein similar to EB proteins. Northern and Western blottings confirmed expression of this gene in other tissues, including brain, lung, and testis. In the organ of Corti, this protein localized throughout distinctively large and well-ordered MT bundles that support the elongated body of mechanically stiff pillar cells of the auditory sensory epithelium. When ectopically expressed in Cos-7 cells, this protein localized along cytoplasmic MTs, promoted MT bundling, and efficiently stabilized MTs against depolymerization in response to high concentration of nocodazole and cold temperature. We propose that this protein, designated CLAMP, is a novel MAP and represents a new member of the CH domain protein family.  相似文献   

6.
The dynamic responses of microtubules (MTs) to internal and external signals are modulated by a plethora of microtubule-associated proteins (MAPs). In higher plants, many plant-specific MAPs have emerged during evolution as advantageous to their sessile lifestyle. Some members of the IQ67 domain (IQD) protein family have been shown to be plant-specific MAPs. However, the mechanisms of interaction between IQD proteins and MTs remain elusive. Here we demonstrate that the domain of unknown function 4005 (DUF4005) of the Arabidopsis IQD family protein ABS6/AtIQD16 is a novel MT-binding domain. Cosedimentation assays showed that the DUF4005 domain binds directly to MTs in vitro. GFP-labeled DUF4005 also decorates all types of MT arrays tested in vivo. Furthermore, we showed that a conserved stretch of 15 amino acid residues within the DUF4005 domain, which shares sequence similarity with the C-terminal MT-binding domain of human MAP Kif18A, is required for the binding to MTs. Transgenic lines overexpressing the DUF4005 domain displayed a spectrum of developmental defects, including spiral growth and stunted growth at the organismal level. At the cellular level, DUF4005 overexpression caused defects in epidermal pavement cell and trichome morphogenesis, as well as abnormal anisotropic cell elongation in the hypocotyls of dark-grown seedlings. These data establish that the DUF4005 domain of ABS6/AtIQD16 is a new MT-binding domain, overexpression of which perturbs MT homeostasis in plants. Our findings provide new insights into the MT-binding mechanisms of plant IQD proteins.  相似文献   

7.
Microtubule-associated proteins (MAPs) are involved in microtubule (MT) bundling and in crossbridges between MTs and other organelles. Previous studies have assigned the MT bundling function of MAPs to their MT-binding domain and its modulation by the projection domain. In the present work, we analyse the viscoelastic properties of MT suspensions in the presence or the absence of cAMP. The experimental data reveal the occurrence of interactions between MT polymers involving MAP2 and modulated by cAMP. Two distinct mechanisms of action of cAMP are identified, which involve on one hand the phosphorylation of MT proteins by the cAMP-dependent protein kinase A (PKA) bound to the end of the N-terminal projection of MAP2, and on the other hand the binding of cAMP to the RII subunit of the PKA affecting interactions between MTs in a phosphorylation-independent manner. These findings imply a role for the complex of PKA with the projection domain of MAP2 in MT–MT interactions and suggest that cAMP may influence directly the density and bundling of MT arrays in dendrites of neurons.  相似文献   

8.
Individual microtubules (MTs) repeat alternating phases of polymerization and depolymerization, a process known as dynamic instability. Microtubule-associated proteins (MAPs) regulate the dynamic instability by increasing the rescue frequency. To explore the influence of MAP2 on in vitro MT dynamics, we correlated the distribution of MAP2 on individual MTs with the dynamic phase changes of the same MTs. MAP2 was modified selectively on its projection region by X-rhodamine iodoacetamide without altering the MT-binding activity. When the labeled MAP2 was added to MTs, the fluorescence was distributed along almost the entire length of individual MTs. However, the inhomogeneity of the distribution gradually became obvious due to the fluorescence bleaching, and the MTs appeared to consist of rapidly bleached portions (RBPs) and slowly bleached portions (SBPs), which were distributed randomly along the MT. By measuring the duration of fluorescence bleaching, the density of MAP2 in SBP was estimated to be approximately 2.5 times higher than the RBP. The average tubulin:MAP2 ratio in SBP was calculated to be 16. When the MT dynamics were observed by dark-field microscopy after determining the MAP2 distribution, rescues were always found to occur only at the SBPs. MTs also displayed intermittent shortening by repeated depolymerization phases separated by pause phases. In these cases, depolymerization phases stopped only at the SBPs. Not every SBP stopped depolymerization, but depolymerization always stopped at an SBP. Taken together, we suggest that there is a minimum density of MAP2 that is necessary to stop depolymerization.  相似文献   

9.
Microtubules (MTs) are dynamic cytoskeletal elements involved in numerous cellular processes. Although they are highly rigid polymers with a persistence length of 1–8 mm, they may exhibit a curved shape at a scale of few micrometers within cells, depending on their biological functions. However, how MT flexural rigidity in cells is regulated remains poorly understood. Here we ask whether MT-associated proteins (MAPs) could locally control the mechanical properties of MTs. We show that two major cross-linkers of the conserved MAP65/PRC1/Ase1 family drastically decrease MT rigidity. Their MT-binding domain mediates this effect. Remarkably, the softening effect of MAP65 observed on single MTs is maintained when MTs are cross-linked. By reconstituting physical collisions between growing MTs/MT bundles, we further show that the decrease in MT stiffness induced by MAP65 proteins is responsible for the sharp bending deformations observed in cells when they coalign at a steep angle to create bundles. Taken together, these data provide new insights into how MAP65, by modifying MT mechanical properties, may regulate the formation of complex MT arrays.  相似文献   

10.
The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. We review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accelerate MT assembly, and CLASP proteins promote MT rescue and suppress MT catastrophe events. These are structurally related proteins that use conserved TOG domains to recruit tubulin dimers to MTs. We discuss models for how these proteins might use these individual tubulin dimers to regulate dynamic behavior of MT plus ends.  相似文献   

11.
Crude preparations of microtubule-associated proteins (MAPs), as well as purified MAP 2, influence the structure of products assembled from purified tubulin at low pH values. At pH 6.2, only 12% of the assembled products were microtubules (MTs) when assembly was conducted in 10% DMSO; 88% were large sheets of protofilaments. In the absence of DMSO, 28% of the structures were MTs. As the content of MAPs in the assembly reaction was increased, the proportion of MTs increased to 87% at a MAP/tubulin (ww) ratio of 0.67 in the presence of DMSO and to 98% at a MAP/tubulin (ww) ratio of 0.33 in the absence of DMSO. Purified MAP 2 was as effective as crude MAP preparations in promoting MT formation at pH 6.2. MTs formed from purified tubulin and MAP 2 were transformed into spirals of protofilaments upon the addition of Vinblastine (VLB). Spirals were also formed when VLB was added to a mixture of tubulin and MAP 2 at 4 ° C. It thus appears that MAP 2 is a causative factor in initiating spiral formation in the presence of VLB.  相似文献   

12.
Posttranslationally modified forms of tubulin accumulate in the subset of stabilized microtubules (MTs) in cells but are not themselves involved in generating MT stability. We showed previously that stabilized, detyrosinated (Glu) MTs function to localize vimentin intermediate filaments (IFs) in fibroblasts. To determine whether tubulin detyrosination or MT stability is the critical element in the preferential association of IFs with Glu MTs, we microinjected nonpolymerizable Glu tubulin into cells. If detyrosination is critical, then soluble Glu tubulin should be a competitive inhibitor of the IF-MT interaction. Before microinjection, Glu tubulin was rendered nonpolymerizable and nontyrosinatable by treatment with iodoacetamide (IAA). Microinjected IAA-Glu tubulin disrupted the interaction of IFs with MTs, as assayed by the collapse of IFs to a perinuclear location, and had no detectable effect on the array of Glu or tyrosinated MTs in cells. Conversely, neither IAA-tyrosinated tubulin nor untreated Glu tubulin, which assembled into MTs, caused collapse of IFs when microinjected. The epitope on Glu tubulin responsible for interfering with the Glu MT-IF interaction was mapped by microinjecting tubulin fragments of alpha-tubulin. The 14-kDa C-terminal fragment of Glu tubulin (alpha-C Glu) induced IF collapse, whereas the 36-kDa N-terminal fragment of alpha-tubulin did not alter the IF array. The epitope required more than the detyrosination site at the C terminus, because a short peptide (a 7-mer) mimicking the C terminus of Glu tubulin did not disrupt the IF distribution. We previously showed that kinesin may mediate the interaction of Glu MTs and IFs. In this study we found that kinesin binding to MTs in vitro was inhibited by the same reagents (i.e., IAA-Glu tubulin and alpha-C Glu) that disrupted the IF-Glu MT interaction in vivo. These results demonstrate for the first time that tubulin detyrosination functions as a signal for the recruitment of IFs to MTs via a mechanism that is likely to involve kinesin.  相似文献   

13.
14.
Microtubule-associated proteins (MAPs) are essential for regulating and organizing cellular microtubules (MTs). However, our mechanistic understanding of MAP function is limited by a lack of detailed structural information. Using cryo-electron microscopy and single particle algorithms, we solved the 8 Å structure of doublecortin (DCX)-stabilized MTs. Because of DCX’s unusual ability to specifically nucleate and stabilize 13-protofilament MTs, our reconstruction provides unprecedented insight into the structure of MTs with an in vivo architecture, and in the absence of a stabilizing drug. DCX specifically recognizes the corner of four tubulin dimers, a binding mode ideally suited to stabilizing both lateral and longitudinal lattice contacts. A striking consequence of this is that DCX does not bind the MT seam. DCX binding on the MT surface indirectly stabilizes conserved tubulin–tubulin lateral contacts in the MT lumen, operating independently of the nucleotide bound to tubulin. DCX’s exquisite binding selectivity uncovers important insights into regulation of cellular MTs.  相似文献   

15.
A microtubule-associated protein composed of a 200 kDa polypeptide (MAP200) was isolated from tobacco-cultured BY-2 cells. Analysis of the partial amino acid sequence showed that MAP200 was identical to TMBP200, the tobacco MOR1/XMAP215 homolog. Although several homolog proteins in animal and yeast cells have been reported to promote MT dynamics in vitro, no such function has been reported for plant homologs. Turbidity measurements of tubulin solution suggested that MAP200 promoted tubulin polymerization, and analysis by dark-field microscopy revealed that this MAP increased both the number and length of microtubules (MTs). Electron microscopy and experiments using a chemical crosslinker demonstrated that MAP200 forms a complex with tubulin. Throughout the cell cycle, some MAP200 colocalized with MT structures, including cortical MTs, the preprophase band, spindle and phragmoplast, while some MAP200 was localized in areas lacking MTs. Based on our biochemical and immunofluorescence findings, the function of MAP200 in MT polymerization is discussed.  相似文献   

16.
Microtubule-associated proteins (MAPs) bind to and stabilize microtubules (MTs) both in vitro and in vivo and are thought to regulate MT dynamics during the cell cycle. It is known that p220, a major MAP of Xenopus, is phosphorylated by p34(cdc2) kinase as well as MAP kinase in mitotic cells, and that the phosphorylated p220 loses its MT-binding and -stabilizing abilities in vitro. We cloned a full-length cDNA encoding p220, which identified p220 as a Xenopus homologue of MAP4 (XMAP4). To examine the physiological relevance of XMAP4 phosphorylation in vivo, Xenopus A6 cells were transfected with cDNAs encoding wild-type or various XMAP4 mutants fused with a green fluorescent protein. Mutations of serine and threonine residues at p34(cdc2) kinase-specific phosphorylation sites to alanine interfered with mitosis-associated reduction in MT affinity of XMAP4, and their overexpression affected chromosome movement during anaphase A. These findings indicated that phosphorylation of XMAP4 (probably by p34(cdc2) kinase) is responsible for the decrease in its MT-binding and -stabilizing abilities during mitosis, which are important for chromosome movement during anaphase A.  相似文献   

17.
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long‐distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio‐temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub‐domain‐specific microtubule (MT) tracks, sign‐posted by different tubulin isoforms, tubulin post‐translational modifications, tubulin GTPase activity and MT‐associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that – especially for axonal cargo – alterations to the MT track can influence transport, although in vivo, it is likely that multiple track‐based effects act synergistically to ensure accurate cargo distribution.  相似文献   

18.
Firm attachments between kinetochores and dynamic spindle microtubules (MTs) are important for accurate chromosome segregation. Centromere protein F (CENP-F) has been shown to include two MT-binding domains, so it may participate in this key mitotic process. Here, we show that the N-terminal MT-binding domain of CENP-F prefers curled oligomers of tubulin relative to MT walls by approximately fivefold, suggesting that it may contribute to the firm bonds between kinetochores and the flared plus ends of dynamic MTs. A polypeptide from CENP-F’s C terminus also bound MTs, and either protein fragment diffused on a stable MT wall. They also followed the ends of dynamic MTs as they shortened. When either fragment was coupled to a microbead, the force it could transduce from a shortening MT averaged 3–5 pN but could exceed 10 pN, identifying CENP-F as a highly effective coupler to shortening MTs.  相似文献   

19.
The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by approximately 3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.  相似文献   

20.
The microtubule (MT) and actin cytoskeletons are fundamental to cell integrity, because they control a host of cellular activities, including cell division, growth, polarization, and migration. Proteins involved in mediating the cross-talk between MT and actin cytoskeletons are key to many cellular processes and play important physiological roles. We identified a new member of the GAS2 family of MT-actin cross-linking proteins, named G2L3 (GAS2-like 3). We show that GAS2-like 3 is widely conserved throughout evolution and is ubiquitously expressed in human tissues. GAS2-like 3 interacts with filamentous actin and MTs via its single calponin homology type 3 domain and C terminus, respectively. Interestingly, the role of the putative MT-binding GAS2-related domain is to modulate the binding of GAS2-like 3 to both filamentous actin and MTs. This is in contrast to GAS2-related domains found in related proteins, where it functions as a MT-binding domain. Furthermore, we show that tubulin acetylation drives GAS2-like 3 localization to MTs and may provide functional insights into the role of GAS2-like 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号