首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The structure of the carbohydrate backbone of the lipopolysaccharide from Pectinatus frisingensis strain VTT E-79104 was analyzed using chemical degradations, NMR spectroscopy, mass spectrometry, and chemical methods. The LPS contains two major structural variants, differing in the presence or absence of an octasaccharide fragment. The largest structure of the carbohydrate backbone of the LPS, that could be deduced from experimental results, consists of 20 monosaccharides arranged in a nonrepetitive sequence: [carbohydrate structure: see text] where R is H or 4-O-Me-alpha-L-Fuc-(1-2)-4-O-Me-beta-Hep-(1-3)-alpha-GlcNAc-(1-2)-beta-Man-(1-3)-beta-ManNAc-(1-4)-alpha-Gal-(1-4)-beta-Hep-(1-3)-beta-GalNAc-(1- where Hep is a residue of D-glycero-D-galacto-heptose; all monosaccharides have the D-configuration except for 4-O-Me-L-Fuc and L-Ara4N. This structure is architecturally similar to the oligosaccharide system reported previously in P. frisingensis VTT E-82164 LPS, but differs from the latter in composition and also in the size of the outer region.  相似文献   

2.
The following structure of core-lipid A region of the lipopolysaccharide (LPS) from Proteus mirabilis strain 1959 (serotype O3) and its rough mutant R110/1959 (Proteus type II core) was determined using NMR and chemical analysis of the core oligosaccharide, obtained by mild acid hydrolysis of LPS, and of the products of alkaline deacylation of the LPS: Incomplete substitutions are indicated by italics. All sugars are in pyranose form, alpha-Hep is the residue Lglycero-alpha-Dmanno-Hep, alpha-DD-Hep is the residue Dglycero-alpha-Dmanno-Hep. The differences with the previously reported structures are discussed.  相似文献   

3.
Vibrio parahaemolyticus strain KX-V212 of a novel serotype, which does not belong to any of the known 13 O-serotypes of this vibrio, was isolated from a patient. Its O-antigen harbors a unique strain-specific O-antigenic factor(s), in addition to that shared by the O-antigen of V. parahaemolyticus serotype O2. A carbohydrate backbone nonasaccharide was isolated from the lipopolysaccharide (LPS) of strain KX-V212 by dephosphorylation, reduction and deacylation and found to consist of one residue each of D-glucose, D-galactose, D-GlcN, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and 5-acetamido-7-(N-acetyl-D-alanyl)amino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (Non5Ac7Ala), and two residues each of D-GlcA and L-glycero-D-manno-heptose (LD-Hep). Analysis of the isolated and deacylated lipid A showed that this oligosaccharide was an artifact resulting from a loss of one GlcN residue from the lipid A backbone. Therefore, the carbohydrate backbone of the LPS is a decasaccharide having the structure shown below. The initial LPS contains also D-GalA and phosphoethanolamine at unknown positions. Both similarity and differences are observed between the LPS of V. parahaemolyticus serotype O2 and strain KX-V212. [carbohydrate structure: see text]  相似文献   

4.
The structure of the carbohydrate backbone of the lipid A-core region of the lipopolysaccharide (LPS) from Proteus penneri strain 16 was determined using NMR and chemical analysis of the core oligosaccharide, obtained by mild acid hydrolysis of the LPS, and of the products of alkaline deacylation of the LPS: formula [see text]. Incomplete substitution is indicated by bold italics. All sugars are in the pyranose form, alpha-Hep is the residue of L-glycero-alpha-D-manno-Hep, alpha-DD-Hep is the residue of D-glycero-alpha-D-manno-Hep, Bu is the (R)-3-hydroxybutyryl residue.  相似文献   

5.
The structure of the lipid A and core region of the lipopolysaccharide (LPS) from Francisella tularensis (ATCC 29684) was analysed using NMR, mass spectrometry and chemical methods. The LPS contains a beta-GlcN-(1-6)-GlcN lipid A backbone, but has a number of unusual structural features; it apparently has no substituent at O-1 of the reducing end GlcN residue in the lipid part in the major part of the population, no substituents at O-3 and O-4 of beta-GlcN, and no substituent at O-4 of the Kdo residue. The largest oligosaccharide, isolated after strong alkaline deacylation of NaBH4 reduced LPS had the following structure: where Delta-GalNA-(1-3)-beta-QuiNAc represents a modified fragment of the O-chain repeating unit. Two shorter oligosaccharides lacking the O-chain fragment were also identified. A minor amount of the disaccharide beta-GlcN-(1-6)-alpha-GlcN-1-P was isolated from the same reaction mixture, indicating the presence of free lipid A, unsubstituted by Kdo and with phosphate at the reducing end. The lipid A, isolated from the products of mild acid hydrolysis, had the structure 2-N-(3-O-acyl4-acyl2)-beta-GlcN-(1-6)-2-N-acyl1-3-O-acyl3-GlcN where acyl1, acyl2 and acyl3 are 3-hydroxyhexadecanoic or 3-hydroxyoctadecanoic acids, acyl4 is tetradecanoic or (minor) hexadecanoic acids. No phosphate substituents were found in this compound. OH-1 of the reducing end glucosamine, and OH-3 and OH-4 of the nonreducing end glucosamine residues were not substituted. LPS of F. tularensis exhibits unusual biological properties, including low endoxicity, which may be related to its unusual lipid A structure.  相似文献   

6.
The following structure of the lipid A-core region of the lipopolysaccharide (LPS) from Proteus vulgaris serotype O25 was determined by using NMR and chemical analysis of the core oligosaccharide, obtained by mild acid hydrolysis of LPS, of the products of alkaline deacylation of the LPS, and of the products of LPS deamination: [structure: see text] Terminal residues of beta-GlcNAc and beta-Kdo (indicated by bold italics) are present alternatively in approximately 3:2 amount, leaving no unsubstituted beta-Gal. All sugars are in the pyranose form, alpha-Hep is the residue of L-glycero-alpha-D-manno-Hep, alpha-DDHep is the residue of D-glycero-alpha-D-manno-Hep.  相似文献   

7.
Analysis of the core part of the LPS from several strains of Proteus revealed that P. penneri strains 2, 11, 19, 107, and P. vulgaris serotypes 04 and 08 have the same structure with a new type of linkage between monosaccharidesan open-chain acetal--that was previously determined for P. vulgaris OX2 and P. penneri 17. The LPS from P. penneri strain 40 contains the same structure substituted with one additional monosaccharide: [molecular structure: see text] where (1S)-GalaNAc1 is a residue of N-acetyl-D-galactosamine in the open-chain form. It is connected as a cyclic acetal to positions 4 and 6 of the galactosamine residue having a free amino group. All other sugars are in the pyranose form.  相似文献   

8.
We describe a re-investigation of the structure of the lipopolysaccharide (LPS) from Helicobacter pylori genomic strain 26695 and its corresponding HP0826::Kan mutant lacking the O-chain component based on the in-depth NMR analysis of the oligosaccharide products obtained through the use of various degradation procedures performed on the purified LPS from both strains, as well as CE–MS data. New structural evidence indicates the presence of the linear arrangement of glucan and heptan portions of the LPS attached through -6-α-ddHep-3-α-l-Fuc-3-β-GlcNAc- fragment to the inner core dd-heptose residue. This structure differs from previously reported structures of the H. pylori 26695 LPS in several aspects.  相似文献   

9.
The structure of lipid A core region of the lipopolysaccharides (LPS) from Proteus mirabilis serotypes O6, O57 and O48 was determined using NMR, MS and chemical analysis of the oligosaccharides, obtained by mild acid hydrolysis, alkaline deacylation, and deamination of LPS: [see text for structure]. Incomplete substitutions are indicated by bold italic type. All sugars are present in pyranose form, alpha-Hep is the residue of L-glycero-alpha-D-manno-Hep, alpha-DD-Hep is the residue of D-glycero-alpha-D-manno-Hep, L-Ara4N is 4-amino-4-deoxy-L-arabinose, Qui4NAlaAla is the residue of 4-N-(L-alanyl-L-alanyl)-4-amino-4,6-dideoxyglucose. All sugars except L-Ara4N have D-configuration. beta-GalA* is partially present in the form of amide with 1,4-diaminobutane (putrescine)-HN(CH2)4NH2 or spermidine-HN(CH2)3NH(CH2)4NH2.  相似文献   

10.
Lipopolysaccharide (LPS) of Escherichia coli strain 2513 (R4 core-type) yielded after alkaline deacylation one major oligosaccharide by high-performance anion-exchange chromatography (HPAEC) which had a molecular mass of 2486.59 Da as determined by electrospray ionization mass spectrometry. This was in accordance with the calculated molecular mass of a tetraphosphorylated dodecasaccharide of the composition shown below. NMR-analyses identified the chemical structure as where l-alpha-d-Hep is l-glycero-alpha-d-manno-heptopyranose and Kdo is 3-deoxy-alpha-d-manno-oct-2-ulopyranosylonic acid and all hexoses are present as d-pyranoses. We have also isolated the complete core-oligosaccharides of E. coli F653 LPS for which only preliminary data were available and investigated the deacylated LPS by NMR and MS. The proposed structure determined previously by methylation analysis was confirmed and is shown below. In addition we have quantified the side-chain heptose substitution of the inner core with GlcpN ( approximately 30%) and confirmed that this sugar is only present when the phosphate at the second l,d-Hepp residue is absent.  相似文献   

11.
Altman E  Chandan V  Li J  Vinogradov E 《The FEBS journal》2011,278(18):3484-3493
In this study, we describe a reinvestigation of the lipopolysaccharide (LPS) structure of Helicobacter pylori strain Sydney (SS1) based on the NMR analysis of oligosaccharides obtained through the use of various degradations of the LPS as well as capillary electrophoresis-MS data. The results of the analysis indicated that the core region of a major H. pylori SS1 LPS glycoform consists of a backbone core oligosaccharide substituted at the D-glycero-D-manno-heptose (DD-Hep) residue by a linear chain composed of a trisaccharide fragment α-ddHep-3-α-L-Fuc-3-β-GlcNAc, as previously demonstrated for H. pylori strain 26695, further elongated by consecutively added α-Glc and β-Gal residues, and terminating in a novel linear chain consisting of 1,2-linked β-ribofuranosyl residues, where the last β-ribofuranosyl residue provides a point of attachment for the O-chain polysaccharide: [Formula: see text] where [2-β-Ribf-](n) is a short (three to five residues) oligomer of 1,2-linked β-ribofuranose (riban), and PS is a polysaccharide chain consisting of N-acetyllactosamine, substituted with α-Fuc to form Lewis (Le)-type structures. In addition to the previously identified LacNAc, Le(y) and Le(x) components, the O-chain polysaccharide of H. pylori SS1 LPS was found to contain a novel LacNAc unit carrying a phosphoethanolamine substituent at the O-6 position of β-GlcNAc residues.  相似文献   

12.
The lipopolysaccharide (LPS) of the Pseudomonas aeruginosa serotype 06 rough-type mutant A28 was isolated by a modified phenol-chloroform-petroleum ether extraction method. Deoxycholate-polyacrylamide gel electrophoresis indicated a single band with mobility similar to that of the complete core region of the wild-type parent serotype 06 (International Antigenic Typing Scheme) strain. Compositional analysis of the LPS indicated that the core oligosaccharide was composed of D-glucose (three units), L-rhamnose (one unit), 2-amino-2-deoxy-D-galactose (one unit), L-glycero-D-manno-heptose (two units), 3-deoxy-D-manno-octulosonic acid (two units), L-alanine (one unit), and phosphate (two units). Under the mild conditions of hydrolysis with methanolic hydrogen chloride, a 7-O-carbamoyl substituent was observed on the second heptose residue. The glycan structure of the LPS was determined by employing one- and two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry-based methods with a backbone oligosaccharide that was obtained from the LPS by deacylation, dephosphorylation, and reduction of the terminal glucosamine. On the basis of the results of the present study and our earlier work with the P. aeruginosa 06-derived core-defective mutant R5 (H. Masoud, E. Altman, J. C. Richards, and J. S. Lam, Biochemistry, 33:10568-10578, 1994), a structural model for the complete core oligosaccharide is proposed.  相似文献   

13.
The following structure of the lipid A-core backbone of the rough type lipopolysaccharides (LPS) from Proteus penneri strains 12, 13, 37, and 44 was determined using NMR and mass spectroscopy and chemical analysis of the oligosaccharides obtained by mild-acid hydrolysis, alkaline O,N-deacylation, O-deacylation with hydrazine, and deamination of the LPSs:where K=H, R=PEtN, R(1)=alpha-Hep-(1-->2)-alpha-DDHep, and R(2)=alpha-GalN (strains 12 and 13) or beta-GlcNAc-(1-->4)-alpha-GlcN (strains 37 and 44). LPS from each strain contained several structural variants. LPS from strain 12 contained a variant with R(1)=alpha-DDHep, whereas LPS from strains 13, 37, and 44 contained structures with K=amide of beta-GalA with putrescine or spermidine. The phosphate group at O-1 of the alpha-GlcN residue in the lipid part was partially substituted with Ara4N.  相似文献   

14.
The core-lipid A region of the lipopolysaccharides from Proteus penneri strains 7, 8, 14, 15, and 21 was studied using NMR spectroscopy, ESI MS, and chemical analysis after alkaline deacylation, deamination, and mild-acid hydrolysis of the lipopolysaccharides. The following general structure of the major core oligosaccharides is proposed: [abstract: see text] where all sugars are in the pyranose form and have the D configuration unless otherwise stated, Hep and DDHep=L-glycero- and D-glycero-D-manno-heptose, respectively, K=H, and Q=H in strain 8 or alpha-Glc in strains 7, 14, 15, and 21. In addition, several minor structural variants are present, including those lacking Ara4N in strains 7 and 15 and having the alpha-GlcN residue N-acylated to a various degree with glycine in strains 7, 8, 14, and 21. In strain 14, there are also core oligosaccharides with K=amide of beta-D-GalpA with putrescine, spermidine, or 4-azaheptane-1,7-diamine; remarkably, these structural variants lack either the PEtN group or the alpha-Hep-(1-->2)-alpha-DDHep disaccharide fragment at alpha-D-GalpA. While structural features of the inner core part are shared by Proteus strains studied earlier, the outermost Q-(1-->4)-alpha-GalNAc-(1-->2)-alpha-DDHep-(1-->6)-alpha-GlcN oligosaccharide unit has not been hitherto reported.  相似文献   

15.
A genetic basis for the biosynthetic assembly of the globotetraose containing lipopolysaccharide (LPS) of Haemophilus influenzae strain RM118 (Rd) was determined by structural analysis of LPS derived from mutant strains. We have previously shown that the parent strain RM118 elaborates a population of LPS molecules made up of a series of related glycoforms differing in the degree of oligosaccharide chain extension from the distal heptose residue of a conserved phosphorylated inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)-]-L-alpha-D-Hepp-(1-->5)-alpha-Kdo. The fully extended LPS glycoform expresses the globotetraose structure, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp. A fingerprinting strategy was employed to establish the structure of LPS from strains mutated in putative glycosyltransferase genes compared to the parent strain. This involved glycose and linkage analysis on intact LPS samples and analysis of O-deacylated LPS samples by electrospray ionization mass spectrometry and 1D (1)H-nuclear magnetic resonance spectroscopy. Four genes, lpsA, lic2A, lgtC, and lgtD, were required for sequential addition of the glycoses to the terminal inner-core heptose to give the globotetraose structure. lgtC and lgtD were shown to encode glycosyltransferases by enzymatic assays with synthetic acceptor molecules. This is the first genetic blueprint determined for H. influenzae LPS oligosaccharide biosynthesis, identifying genes involved in the addition of each glycose residue.  相似文献   

16.
The structure of the LPS from Serratia marcescens serotype O19 was investigated. Deamination of the LPS released the O-chain polysaccharide together with a fragment of the core oligosaccharide. The following structure of the product was determined by NMR spectroscopy, mass spectrometry, and chemical methods: [carbohydrate structure: see text] The main polymer consists of a repeating disaccharide V-U and is present on average of 18 units per chain as estimated by integration of signals in the NMR spectra. The residue O corresponds to the primer, which initiates biosynthesis of the O-chain, and an oligomer of a disaccharide R-S is an insert between the primer and the main polymer. The polysaccharide has a beta-Kdo residue at the non-reducing end, a feature similar to that observed previously in the LPS from Klebsiella O12.  相似文献   

17.
Penicillin-binding protein 5 (PBP 5) of Escherichia coli functions as a d-alanine carboxypeptidase, cleaving the C-terminal d-alanine residue from cell wall peptides. Like all PBPs, PBP 5 forms a covalent acyl-enzyme complex with beta-lactam antibiotics; however, PBP 5 is distinguished by its high rate of deacylation of the acyl-enzyme complex (t(12) approximately 9 min). A Gly-105 --> Asp mutation in PBP 5 markedly impairs this beta-lactamase activity (deacylation), with only minor effects on acylation, and promotes accumulation of a covalent complex with peptide substrates. To gain further insight into the catalytic mechanism of PBP 5, we determined the three-dimensional structure of the G105D mutant form of soluble PBP 5 (termed sPBP 5') at 2.3 A resolution. The structure is composed of two domains, a penicillin binding domain with a striking similarity to Class A beta-lactamases (TEM-1-like) and a domain of unknown function. In addition, the penicillin-binding domain contains an active site loop spatially equivalent to the Omega loop of beta-lactamases. In beta-lactamases, the Omega loop contains two amino acids involved in catalyzing deacylation. This similarity may explain the high beta-lactamase activity of wild-type PBP 5. Because of the low rate of deacylation of the G105D mutant, visualization of peptide substrates bound to the active site may be possible.  相似文献   

18.
Deacylation of purified lipopolysaccharides (LPS) markedly reduces its toxicity toward mammals. However, the biological significance of LPS deacylation during infection of the mammalian host is uncertain, particularly because the ability of acyloxyacyl hydrolase, the leukocyte enzyme that deacylates purified LPS, to attack LPS residing in the bacterial cell envelope has not been established. We recently showed that the cellular and extracellular components of a rabbit sterile inflammatory exudate are capable of extensive and selective removal of secondary acyl chains from purified LPS. We now report that LPS as a constituent of the bacterial envelope is also subject to deacylation in the same inflammatory setting. Using Escherichia coli LCD25, a strain that exclusively incorporates radiolabeled acetate into fatty acids, we quantitated LPS deacylation as the loss of radiolabeled secondary (laurate and myristate) and primary fatty acids (3-hydroxymyristate) from the LPS backbone. Isolated mononuclear cells and neutrophils removed 50% and 20-30%, respectively, of the secondary acyl chains of the LPS of ingested whole bacteria. When bacteria were killed extracellularly during incubation with ascitic fluid, no LPS deacylation occurred. In this setting, the addition of neutrophils had no effect, but addition of mononuclear cells resulted in removal of >40% of the secondary acyl chains by 20 h. Deacylation of LPS was always restricted to the secondary acyl chains. Thus, in an inflammatory exudate, primarily in mononuclear phagocytes, the LPS in whole bacteria undergoes substantial and selective acyloxyacyl hydrolase-like deacylation, both after phagocytosis of intact bacteria and after uptake of LPS shed from extracellularly killed bacteria. This study demonstrates for the first time that the destruction of Gram-negative bacteria by a mammalian host is not restricted to degradation of phospholipids, protein, and RNA, but also includes extensive deacylation of the envelope LPS.  相似文献   

19.
The LPS from Shewanella oneidensis strain MR-1 was analysed by chemical methods and by NMR spectroscopy and mass spectrometry. The LPS contained no polysaccharide O-chain, and its carbohydrate backbone had the following structure: (1S)-GalNAco-(1-->4,6)-alpha-Gal-(1-->6)-alpha-Gal-(1-->3)-alpha-Gal-(1-P-3)-alpha-DDHep-(1-->5)-alpha-8-aminoKdo4R-(2-->6)-beta-GlcN4P-(1-->6)-alpha-GlcN1P, where R is P or EtNPP. There are several novel aspects to this LPS. It contains a novel linking unit between the core polysaccharide and lipid A moieties, namely 8-amino-3,8-dideoxy-D-manno-octulosonic acid (8-aminoKdo) and a residue of 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine, GalNAco) in an open-chain form, linked as cyclic acetal to O-4 and O-6 of D-galactopyranose. The structure contains a phosphodiester linkage between the alpha-D-galactopyranose and D-glycero-D-manno-heptose (DDHep) residues.  相似文献   

20.
Much of the inflammatory response of the body to bloodborne Gram-negative bacteria occurs in the liver and spleen, the major organs that remove these bacteria and their lipopolysaccharide (LPS, endotoxin) from the bloodstream. We show here that LPS undergoes deacylation in the liver and spleen by acyloxyacyl hydrolase (AOAH), an endogenous lipase that selectively removes the secondary fatty acyl chains that are required for LPS recognition by its mammalian signaling receptor, MD-2-TLR4. We further show that Kupffer cells produce AOAH and are required for hepatic LPS deacylation in vivo. AOAH-deficient mice did not deacylate LPS and, whereas their inflammatory responses to low doses of LPS were similar to those of wild type mice for approximately 3 days after LPS challenge, they subsequently developed pronounced hepatosplenomegaly. Providing recombinant AOAH restored LPS deacylating ability to Aoah(-/-) mice and prevented LPS-induced hepatomegaly. AOAH-mediated deacylation is a previously unappreciated mechanism that prevents prolonged inflammatory reactions to Gram-negative bacteria and LPS in the liver and spleen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号