首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The production and the mechanism of excretion of cloacin DF13 were investigated in noninduced and mitomycin C-induced cell cultures. A mitomycin C concentration was selected which did not cause lysis of cloacinogenic cells, but at the same time induced a maximal production of cloacin DF13. Native cloacin DF13, possessing killing activity, was first released into the cytoplasm. Shortly thereafter, the bacteriocin was transported through the cytoplasmic membrane and accumulated in the periplasm. Finally, cloacin DF13 was excreted into the culture medium. A small amount of cloacin DF13 remained associated with the cell surface. Producing cells did not become permeable for the cytoplasmic enzyme beta-galactosidase. Apparently the cloacin DF13 leaves the producing cells by an excretion process which is not similar to the mechanism proposed for bacterial secretory proteins. The processes of excretion by producing cells and of uptake by susceptible cells were also not identical because mutant cloacin DF13, which was not transported through the outer membrane into susceptible cells, was excreted like the wild-type cloacin DF13. The composition of the culture medium greatly affected production of cloacin DF13. The presence of sugars known to cause catabolite repression not only inhibited the production but also strongly reduced the excretion of cloacin DF13 into the culture medium.  相似文献   

3.
Escherichia coli TG1, transformed with an expression plasmid pAQN carrying the aqualysin I (AQI) gene derived from Thermus aquaticus YT-1 under the control of the tac promoter, was cultivated under various conditions in order to find fermentation conditions for the efficient production of the thermophilic protease, AQI. The amount of AQI produced was closely related to the growth phase at the time of isopropyl--d-thiogalactopyranoside (IPTG) induction, and the highest production was obtained when it was added during the exponential growth phase. The addition of yeast extract had a greater effect on AQI production than did Polypeptone or casamino acids, and AQI productivity increased from 1.1 × 103 kU/g to 2.7 × 103 kU/g cells when 2 g/l yeast extract was supplied. Furthermore, the specific growth rate improved from 0.35 h–1 to 0.89 h–1 when 5 g/l yeast extract was supplied. The culture temperature also affected AQI gene expression. When the temperature was shifted from 37°C to 34°C at the time of IPTG induction, 19 kU/ml enzymatically active AQI was obtained, corresponding to a 28% increase over the amount produced in a batch culture without a shift. This is about a 44-fold higher yield than was obtained from the original strain, T. aquaticus YT-1.  相似文献   

4.
Escherichia coli JM103[pUC8] was employed as a model to investigate the behavior of a recombinant microbial system harboring a plasmid at high copy numbers. Experiments with batch and continuous cultures of recombinant and plasmid-free cells were conducted in a well-controlled bio-reactor. In batch experiments, plasmid copy number varied typically from an average of 500 during the exponential growth phase to as high as 1250 during the stationary phase. While the segregational plasmid instability was negligible in batch experiments, severe segregational instability occurred in continuous experiments conducted over a range of dilution rates, resulting in complete loss of plasmid-bearing cells from the continuous cultures within few residence times after transition to continuous operation. The profound differences in the specific growth rates and mass yields of the plasmid-free and plasmid-bearing cells resulting from the extra metabolic burden on the plasmid-bearing cells mainly due to excessive plasmid DNA content was the major cause for the plasmid instability. Plasmid multirnerization was detected in batch and continuous cultures and was found to have significant influence on the effective copy number and was partially responsible for the severe segregational instability in continuous cultures. A quasi-steady state representative of plasmid-bearing cells was established in the initial portion of each continuous culture experiment. Due to the profound growth rate differential between the two types of cells, transients of considerable duration were observed in each continuous culture experiment (initiated with a pure culture of plasmid bearing cells) following the slow accumulation of plasmid-free cells near the end of the quasi-steady state. Significant variations in various culture parameters (including a rapid decline in the plasmid-bearing fraction of the total cell population) occurred during this period, leading ultimately to a steady state for a culture dominated entirely by plasmid-free cells. In continuous cultures, plasmid copy number during the quasi-steady states increased with decreasing dilution rate from 50 (at 0.409 h(-1)) to 941 (at 0.233 h(-1)). Production of the plasmid-encoded protein (beta-lactamase) in these experiments was maximized at an intermediate dilution rate, corresponding to an optimum copy number of about 450. A similar optimum copy number was observed in batch cultures. Significant excretion of beta-lactamase was observed at both low and high dilution rates.  相似文献   

5.
recBC DNase of Escherichia coli has been purified from the transformant, HB101/pFS11-04 (recB+ recC+), by successive ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-150 gel filtration, hydroxyapatite chromatography, DNA cellulose affinity chromatography, and second DEAE-cellulose chromatography. The purified enzyme was obtained in an overall yield of 3%. The enzyme protein appeared as a single pure component on native polyacrylamide gel electrophoresis. The purified enzyme was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional electrophoresis. The results show that recBC DNase consists of two nonidentical subunits with molecular weights of 125,000 and 135,000, and isoelectric points of 5.6 and 5.7, respectively.  相似文献   

6.
7.
An enzyme-linker-peptide fusion protein reporter system was constructed for sensitive analysis of affinity of peptide ligands to their receptor. An E. coli alkaline phosphatase (EAP) mutant enzyme with high catalytic activity was selected as the reporter protein. Interaction of affinity peptide and streptavidin was applied as demonstration of the method. Three affinity peptides, strep-tag I (SI), strep-tag II (SII) and streptavidin binding peptide (SBP) were genetically fused to the C-terminal of EAP respectively, with an insertion of a flexible linker peptide in between. The enzyme activity of the EAP fusions showed no obvious change. After expression and purification, the EAP-affinity peptide fusions were applied to the streptavidin modified surface. Binding of the fusions to the surface through interaction of affinity peptides to streptavidin was indicated by color generated from conversion of the substrate by EAP. The relative affinity and specificity of each affinity peptides to the immobilized streptavidin were then evaluated with high sensitivity and broad detection range. This method may be used for effective high-throughput screening of high affinity peptide from the peptide pool.  相似文献   

8.
An enzyme-linker-peptide fusion protein reporter system was constructed for sensitive analysis of affinity of peptide ligands to their receptor. An E. coli alkaline phosphatase (EAP) mutant enzyme with high catalytic activity was selected as the reporter protein. Interaction of affinity peptide and streptavidin was applied as demonstration of the method. Three affinity peptides, strep-tag I (SI), strep-tag II (SII) and streptavidin binding peptide (SBP) were genetically fused to the C-terminal of EAP respectively, with an insertion of a flexible linker peptide in between. The enzyme activity of the EAP fusions showed no obvious change. After expression and purification, the EAP-affinity peptide fusions were applied to the streptavidin modified surface. Binding of the fusions to the surface through interaction of affinity peptides to streptavidin was indicated by color generated from conversion of the substrate by EAP. The relative affinity and specificity of each affinity peptides to the immobilized streptavidin were then evaluated with high sensitivity and broad detection range. This method may be used for effective high-throughput screening of high affinity peptide from the peptide pool.  相似文献   

9.
May T  Okabe S 《Journal of bacteriology》2008,190(22):7479-7490
It has been shown that Escherichia coli harboring the derepressed IncFI and IncFII conjugative F plasmids form complex mature biofilms by using their F-pilus connections, whereas a plasmid-free strain forms only patchy biofilms. Therefore, in this study we investigated the contribution of a natural IncF conjugative F plasmid to the formation of E. coli biofilms. Unlike the presence of a derepressed F plasmid, the presence of a natural IncF F plasmid promoted biofilm formation by generating the cell-to-cell mating F pili between pairs of F+ cells (approximately two to four pili per cell) and by stimulating the formation of colanic acid and curli meshwork. Formation of colanic acid and curli was required after the initial deposition of F-pilus connections to generate a three-dimensional mushroom-type biofilm. In addition, we demonstrated that the conjugative factor of F plasmid, rather than a pilus synthesis function, was involved in curli production during biofilm formation, which promoted cell-surface interactions. Curli played an important role in the maturation process. Microarray experiments were performed to identify the genes involved in curli biosynthesis and regulation. The results suggested that a natural F plasmid was more likely an external activator that indirectly promoted curli production via bacterial regulatory systems (the EnvZ/OmpR two-component regulators and the RpoS and HN-S global regulators). These data provided new insights into the role of a natural F plasmid during the development of E. coli biofilms.  相似文献   

10.
Escherichia coli harboring a recombinant plasmid was cultivated in fed-batch culture to enhance production of a gene product. Expression of the leucine gene from Thermus thermophilus in the recombinant plasmid was examined by the assay of beta-isopropylmalate dehydrogenase activity at 75 degrees C. When E. coli was cultivated in medium without leucine, biomass concentration reached 15 g/L and the specific activity became 0.082 U/mg protein. When leucine was fed in the medium throughout cultivation, although biomass concentration reached 63 g/L, the specific activity decreased to 0.016 U/mg protein. When E. coli was cultivated in medium containing 1 g leucine/L, the specific activity remained virtually constant (about 0.13 U/mg protein) and biomass concentration reached 32 g dry cells/L. In these cultivations, growth yields of several amino acids and glucose were examined. When leucine was not added to the medium, growth yields except for histidine were lowest. When leucine was fed throughout the cultivation, growth yields of glucose and tryptophan were highest. The pH-stat was useful for feeding amino acids.  相似文献   

11.
Tang  Xiao-Ling  Hu  Wen-Ye  Wang  Zhi-Chao  Zheng  Ren-Chao  Zheng  Yu-Guo 《Biotechnology letters》2021,43(7):1265-1276
Objective

To solve the bottleneck of plasmid instability during microbial fermentation of l-DOPA with recombinant Escherichia coli expressing heterologous tyrosine phenol lyase.

Results

The tyrosine phenol lyase from Fusobacterium nucleatum was constitutively expressed in E. coli and a fed-batch fermentation process with temperature down-shift cultivation was performed. Efficient strategies including replacing the original ampicillin resistance gene, as well as inserting cer site that is active for resolving plasmid multimers were applied. As a result, the plasmid stability was increased. The co-use of cer site on plasmid and kanamycin in culture medium resulted in proportion of plasmid containing cells maintained at 100% after fermentation for 35 h. The specific activity of tyrosine phenol lyase reached 1493 U/g dcw, while the volumetric activity increased from 2943 to 14,408 U/L for l-DOPA biosynthesis.

Conclusions

The established strategies for plasmid stability is not only promoted the applicability of the recombinant cells for l-DOPA production, but also provides important guidance for industrial fermentation with improved microbial productivity.

  相似文献   

12.
Guanosine-3',5'-tetraphosphate (ppGpp) and sigmaS, two regulators of the starvation response of Escherichia coli, have received increasing attention for monitoring cell physiological changes in production processes, although both are difficult to quantify. The kinetics of cAMP formation and degradation were not yet investigated in such processes, although the complex regulation of cAMP by synthesis, release, and degradation in connection with straightforward methods for analysis renders it a highly informative target. Therefore, we followed the cAMP concentration in various nonrecombinant and in four different recombinant glucose-limited fed-batch processes in different production scales. The intracellular cAMP concentration increases strongly at the end of the batch phase. Most cAMP is released to the cultivation medium. The rates of accumulation and degradation of extracellular cAMP are growth-rate-dependent and show a distinct maximum at a growth rate of about 0.35 h(-1). At very low growth rates, below 0.05 h(-1), extracellular cAMP is not produced but rather degraded, independent of whether this low growth rate is caused by glucose limitation or by the high metabolic load of recombinant protein production. In contrast to intracellular cAMP, which is highly unstable, analysis of extracellular cAMP is simpler and the kinetics of accumulation and degradation reflect well the physiological situation, including unlimited growth, limitation, and severe starvation of a production host.  相似文献   

13.
A plasmid recombination assay, which utilized mutated Vibrio fischeri luciferase genes, cloned in Escherichia coli plasmids was developed. Expression of the recombination product, a functional luxA gene, was assayed by measuring light intensity. This system was used to investigate the effect of E. coli gene functions on lambda Red- and Gam-dependent plasmid recombination. The genetic and physiological requirements for Red- and Gam-dependent plasmid recombination are similar to the conditions which allow synthesis of plasmid linear multimers. Both recombination and linear multimer synthesis are mediated by Red activity in recBrecC and in sbcB mutants and by Gam activity in sbcB and sbcA mutants, but neither recombination nor linear multimer synthesis is mediated by Red or Gam functions in RecBCD+ExoI+ cells. When mediated by Red in sbcB mutants, both recombination and linear multimer synthesis are RecA-independent, and when mediated by Gam, in the same genetic background, both are RecA-dependent. A role for replication in Red- and Gam-mediated plasmid recombination is suggested by the dependence of the recombination activity on DnaB. A model which hypothesizes mutual dependence of linear plasmid multimer synthesis and plasmid recombination by the RecE, RecF and Red pathways is presented. We propose that ends that are produced during this type of replication are recombinogenic in all three pathways and that new rounds of replication are primed by a recombination-dependent invasion of duplex DNA by 3' single strand ends.  相似文献   

14.
A DNA-membrane complex was extracted from minicells of an Escherichia coli mutant harboring a "miniplasmid" derivative (11.2 kilobases) of the low-copynumber plasmid RK2 (56 kilobases). The complex contained various species of supercoiled and intermediate forms of plasmid DNA, of which approximately 20% was bound firmly to the membrane after centrifugation in a CsCl density gradient. The plasmid DNA-membrane complex synthesized new plasmid DNA without the addition of exogenous template, enzymes, or other proteins. DNA synthesis appeared to proceed semi-conservatively, was dependent on the four deoxynucleoside triphosphates, partially dependent on ribonucleoside triphosphates, and was sensitive to rifampin, an antibiotic known to inhibit initiation of replication. Novobiocin and nalidixic acid also inhibited synthesis, as did the omission of ATP, N-Ethylmaleimide, an inhibitor of DNA polymerase II and III activity, but not DNA polymerase I activity, also partially inhibited the synthetic reaction, as did chloramphenicol. The plasmid DNA synthetic product was analyzed by alkaline sucrose and dye-CsCl gradient centrifugation, as well as by agarose gel electrophoresis. In each case, the product consisted of parental and intermediate forms of plasmid DNA. Some chromosomal DNA was also synthesized by a contaminating bacterial DNA-membrane complex, but this synthesis was rifampin insensitive and could be separated from plasmid DNA synthesis.  相似文献   

15.
In the context of recombinant DNA technology, the development of feasible and high-yielding plasmid DNA production processes has regained attention as more evidence for its efficacy as vectors for gene therapy and DNA vaccination arise. When producing plasmid DNA in Escherichia coli, a number of biological restraints, triggered by plasmid maintenance and replication as well as culture conditions are responsible for limiting final biomass and product yields. This termed "metabolic burden" can also cause detrimental effects on plasmid stability and quality, since the cell machinery is no longer capable of maintaining an active metabolism towards plasmid synthesis and the stress responses elicited by plasmid maintenance can also cause increased plasmid instability. The optimization of plasmid DNA production bioprocesses is still hindered by the lack of information on the host metabolic responses as well as information on plasmid instability. Therefore, systematic and on-line approaches are required not only to characterise this "metabolic burden" and plasmid stability but also for the design of appropriate metabolic engineering and culture strategies. The monitoring tools described to date rapidly evolve from laborious, off-line and at-line monitoring to online monitoring, at a time-scale that enables researchers to solve these bioprocessing problems as they occur. This review highlights major E. coli biological alterations caused by plasmid maintenance and replication, possible causes for plasmid instability and discusses the ability of currently employed bioprocess monitoring techniques to provide information in order to circumvent metabolic burden and plasmid instability, pointing out the possible evolution of these methods towards online bioprocess monitoring.  相似文献   

16.
17.
Outer membrane lipoproteins are emerging as key targets for protective immunity to many bacterial pathogens. Heterologous expression of lipoproteins in Escherichia coli does not always result in high level expression of acylated recombinant protein. Thus, these proteins do not take up their correct membrane topology and are lacking the immunostimulatory properties endowed by the lipid. To this end, we have designed a lipoprotein expression vector (pDUMP) that results in the production of fusion proteins containing the E. coli major outer membrane lipoprotein (Lpp) signal sequence, lipoprotein signal peptidase recognition site, and the +2 outer membrane sorting signal at their N termini. To test the ability of pDUMP to express lipoproteins from heterologous hosts, the surface lipoprotein PsaA from the Gram-positive organism Streptococcus pneumoniae and the outer membrane lipoproteins MlpA from the Gram-negative Pasteurella multocida and BlpA from the spirochete Brachyspira hyodysenteriae were cloned into both hexahistidine fusion vectors and pDUMP. High level expression of antigenically active protein from both the hexahistidine fusion vectors and pDUMP resulted in abundant bands of the predicted molecular masses when analyzed by SDS-PAGE. When grown in the presence of 3[H]palmitic acid, proteins encoded by pDUMP were observed to incorporate palmitic acid whilst the hexahistidine fusion proteins did not. Using mass spectrometry and image analysis we determined the efficiency of lipidation between the three clones to vary from 31.7 to 100%. In addition, lipidated, but not hexahistidine, forms of the proteins were presented on the E. coli surface.  相似文献   

18.
This paper describes the quantitative evaluation of a bioluminescence assay for DNA damaging agents with respect to the linearity, sensitivity, specificity and dependence on the cell culture status. A recombinant bacterium, DPD2794, harboring a plasmid with a recA promoter fused to the luxCDABE operon, showed a very sensitive response to DNA-damaging stress. DPD2794 was found to show no noticeable response to non-mutagenic agents, i.e. phenol, except for some false responses appearing soon after injection. DPD2794 also showed a highly sensitive response to Mitomycin C, which was found to be a growth-stage-dependent response, not a growth-rate-dependent response. In addition, the relationship between the bioluminescence emitted in vivo, luciferase activity measured in vitro, and the amount of Lux proteins expressed was determined. The intensity of the bioluminescence emitted was found to be proportional to the luciferase activity in vitro, while the bioluminescence also seems to be correlated with the level of Lux proteins expressed in these Escherichia coli cells, up to 230 min post induction.  相似文献   

19.
A new gene mvrC conferring resistance to methyl viologen, a powerful superoxide radical propagator, was cloned on 13.5 kilo base (kb) EcoRI DNA fragment. It gave resistance against methyl viologen to even a wild-type strain with gene dosage dependence. From the physical maps obtained by restriction enzyme digestions, it was predicted to locate at 580 kbp (12.3 min) on the physical map of E.coli. This was confirmed by the Southern hybridization of lambda phages covering this region with mvrC probe. The DNA sequence of mvrC gene was determined and its deduced protein encoding a 12 kd hydrophobic protein was confirmed by maxicell labeling of MvrC protein.  相似文献   

20.
Abstract A multiple antibiotic-resistant Staphylococcus aureus , was found to possess three plasmid bands in agarose gel electrophoresis. A plasmid of approximately 4.3 kb (pMC790/2) was found to code for ampicillin and tetracycline resistance and to have one Eco RI site when transformed into S. aureus RN 4220. pMC790/2 in unmodified form was transformed into a recA E. coli at a frequency of 1.2×104 transformants/μg of plasmid DNA. Plasmid (pMC790/2) replicated, maintained itself stably and expressed far better in the E. coli host than in S. aureus .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号