首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Scaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them. We have shown that S/MARs do share a characteristic structural property, they have a markedly high predicted propensity to undergo strand separation when placed under negative superhelical tension. This result agrees with experimental observations, that S/MARs contain base-unpairing regions (BURs). Here, we perform a quantitative evaluation of the association between the ease of stress-induced DNA duplex destabilization (SIDD) and S/MAR binding activity. We first use synthetic oligomers to investigate how the arrangement of localized unpairing elements within a base-unpairing region affects S/MAR binding. The organizational properties found in this way are applied to the investigation of correlations between specific measures of stress-induced duplex destabilization and the binding properties of naturally occurring S/MARs. For this purpose, we analyze S/MAR and non-S/MAR elements that have been derived from the human genome or from the tobacco genome. We find that S/MARs exhibit long regions of extensive destabilization. Moreover, quantitative measures of the SIDD attributes of these fragments calculated under uniform conditions are found to correlate very highly (r2>0.8) with their experimentally measured S/MAR-binding strengths. These results suggest that duplex destabilization may be involved in the mechanisms by which S/MARs function. They suggest also that SIDD properties may be incorporated into an improved computational strategy to search genomic DNA sequences for sites having the necessary attributes to function as S/MARs, and even to estimate their relative binding strengths.  相似文献   

4.
Recent approaches have failed to detect nucleotide sequence motifs in Scaffold/Matrix Attachment Regions (S/MARs). The lack of any known motifs, together with the confirmation that some S/MARs are not associated to any peculiar sequence, indicates that some structural elements, such as DNA curvature, have a role in chromatin organization and on their efficiency in protein binding. Similar to DNA curvature, S/MARs are located close to promoters, replication origins, and multiple nuclear processes like recombination and breakpoint sites. The chromatin structure in these regulatory regions is important to chromosome organization for accurate regulation of nuclear processes. In this article we review the biological importance of the co-localization between bent DNA sites and S/MARs. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 5, pp. 598–606.  相似文献   

5.
6.
There is abundant evidence that the DNA in eukaryotic cells is organized into loop domains that represent basic structural and functional units of chromatin packaging. To explore the DNA domain organization of the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1, we have identified a significant portion of the scaffold/matrix attachment regions (S/MARs) within this region. Forty independent putative S/MAR elements were assigned within the 16q22.1 locus. More than 90% of these S/MARs are AT rich, with GC contents as low as 27% in 2 cases. Thirty-nine (98%) of the S/MARs are located within genes and 36 (90%) in gene introns, of which 15 are in first introns of different genes. The clear tendency of S/MARs from this region to be located within the introns suggests their regulatory role. The S/MAR resource constructed may contribute to an understanding of how the genes in the region are regulated and of how the structural architecture and functional organization of the DNA are related.  相似文献   

7.
We have identified a MAR/SAR recognition signature (MRS) which is common to a large group of matrix and scaffold attachment regions. The MRS is composed of two degenerate sequences (AATAAYAA and AWWRTAANNWWGNNNC) within close proximity. Analysis of >300 kb of genomic sequence from a variety of eukaryotic organisms shows that the MRS faithfully predicts 80% of MARs and SARs. In each case where we find a MRS, the corresponding DNA region binds specifically to the nuclear scaffold. Although all MRSs are associated with a SAR, not all known SARs and MARs contain a MRS, suggesting that at least two classes exist, one containing a MRS, the other not. Evidence is presented that the two sequence elements of the bipartite MRS occupy a position on the nucleosome near the dyad axis, together creating a putative protein binding site. The identification of a MAR- and SAR-associated DNA element is an important step forward towards understanding the molecular mechanisms of these elements. It will allow: (i) analysis of the genomic location of SARs, e.g. in relationship to genes, based on sequence information alone, rather than on the basis of an elaborate biochemical assay; (ii) identification and analysis of proteins that specifically bind to the MRS.  相似文献   

8.
9.
10.
11.
Although a gene's location can greatly influence its expression, genome sequencing has shown that orthologous genes may exist in very different environments in the genomes of closely related species. Four genes in the maize alcohol dehydrogenase (adh1) region represent solitary genes dispersed among large repetitive blocks, whereas the orthologous genes in sorghum are located in a different setting surrounded by low-copy-number DNAs. A specific class of DNA sequences, matrix attachment regions (MARs), was found to be in comparable positions in the two species, often flanking individual genes. If these MARs define structural domains, then the orthologous genes in maize and sorghum should experience similar chromatin environments. In addition, MARs were divided into two groups, based on the competitive affinity of their association with the matrix. The "durable" MARs retained matrix associations at the highest concentrations of competitor DNA. Most of the durable MARs mapped outside genes, defining the borders of putative chromatin loops. The "unstable" MARs lost their association with the matrix under similar competitor conditions and mapped mainly within introns. These results suggest that MARs possess both domain-defining and regulatory roles. Miniature inverted repeat transposable elements (MITEs) often were found on the same fragments as the MARs. Our studies showed that many MITEs can bind to isolated nuclear matrices, suggesting that MITEs may function as MARs in vivo.  相似文献   

12.
The RB7 matrix attachment region (MAR), when flanking a uidA (GUS) reporter gene, has been previously shown to increase uidA gene expression by 60-fold in stably transformed tobacco suspension cell lines. We have now used the same co-transformation procedure to determine the effect of flanking MARs on uidA gene expression in tobacco plants. The neomycin phosphotransferase selection gene and uidA reporter gene on separate plasmids were co-transformed into seedlings by microprojectile bombardment. In primary transgenic plants, the average uidA expression in plants with MARs was twofold greater than in control plants without MARs, but there was no effect on variation of expression. GUS activity was not proportional to the number of integrated uidA transgenes over the entire range of copy numbers. However, in the lower part of the copy number range, MAR lines show a tendency for expression to increase with copy number. Transgene expression in backcross progenies of the MAR-containing lines averaged threefold higher than in control progenies. MARs also reduced the loss of transgene expression in the BC1 generation. Sixty-three per cent of the 21 MAR-containing primary transformants, but only 20% of the 14 control primary transformants, produced backcross progenies in which no loss of transgene expression was observed. These observations are discussed in the context of homology-dependent gene silencing.  相似文献   

13.
14.
Chromosomal translocations t(4;11) are based on illegitimate recombinations between the human MLL and AF4 genes, and are associated with high-risk acute leukemias of infants and young children. Here, the question was asked, whether a correlation exists between the location of translocation breakpoints within both genes and the location of S/MARs. In "halo mapping experiments" (to define SARs), about 20 kb of MLL DNA was found to be attached to the nuclear matrix. Similar experiments performed for the translocation partner gene AF4 revealed that SARs are spanning nearly the complete breakpoint cluster region of the AF4 gene. By using short DNA fragments in "scaffold reassociation experiments" (to define MARs), similar results were obtained for both genes. However, Distamycin A competition experiments in combination with "scaffold reassociation experiments" revealed specific differences in the affinity of each tested DNA fragment to bind the isolated nuclear matrix proteins. When the latter data were compared with the known location of chromosomal breakpoints for both genes, an unexpected correlation was observed. DNA areas with strong MAR affinity contained fewer translocation breakpoints, while areas with weak or absent MAR affinity showed a higher density of chromosomal breakpoints.  相似文献   

15.
To investigate the effect of matrix attachment regions (MARs) on transgene expression levels and stability in cereal crops, we generated 83 independent transgenic rice callus lines containing a gusA expression cassette either as a simple expression unit, or flanked with MARs from tobacco (Rb7) or yeast (ARS1). Transgenic rice plants were regenerated from these callus lines and analysed at the structural and expression levels over two generations. In the first generation (T0), both Rb7 and ARS1 MARs significantly increased transgene expression levels. In the populations of plants containing MARs, we observed a significant reduction in the number of non-expressing lines compared to the population of plants without MARs. However, variation in β-glucuronidase (GUS) expression levels between independent lines was similar both in the presence and absence of flanking MARs. In the presence of MARs, GUS activity increased in proportion to transgene copy number up to 20 copies, but was generally reduced in lines carrying a higher copy number. In the population of plants without MARs, there was no correlation between expression level and transgene copy number. In the second generation (T1), transgene expression levels were significantly correlated with those of the T0 parents. The Rb7 MARs significantly improved the stability of transgene expression levels over two generations, and therefore appear to offer protection against transgene silencing. Our study shows that the exploitation of MARs may be an important strategy for stabilising transgene expression levels in genetically engineered cereals.  相似文献   

16.
17.
Matrix attachment regions (MARs) are thought to participate in the organization and segregation of independent chromosomal loop domains. Although there are several reports on the action of natural MARs in the context of heterologous genes in transgenic plants, in our study we tested a synthetic MAR (sMAR) with the special property of unpairing when under superhelical strain, for its effect on reporter gene expression in tobacco plants. The synthetic MAR was a multimer of a short sequence from the MAR 3' end of the immunoglobulin heavy chain (IgH) enhancer. This sMAR sequence was used to flank the beta-glucuronidase (GUS) reporter gene within the T-DNA of the binary vector pBI121. Vectors with or without the sMARs were then used to transform tobacco plants by Agrobacterium tumefaciens. Transgenic plants containing the sMAR sequences flanking the GUS gene exhibited higher levels of transgene expression compared with transgenic plants which lacked the sMARs. This effect was observed independently of the position of the sMAR at the 5' side of the reporter gene. However, variation of the detected transgene expression was significant in all transformed plant populations, irrespective of the construct used.  相似文献   

18.
基质结合区(MARs)与转基因植物的基因表达   总被引:1,自引:0,他引:1  
王槐  陈正华 《生命科学》1999,11(2):54-57
对动植物的研究结果表明,基质结合区(MARs)能提高转基因的表达水平,并能降低其在转基因个体之间的表达差异。本文着重综述了MARs的基本特征及其在转基因植物中的研究应用,对MARs在转基因动物方面的研究成果和MARs的作用机制也作了介绍。  相似文献   

19.
Improving genetic transformation efficiency is a major concern in plant genetic engineering. While various strategies have been investigated, the enhancement of selectable marker gene expression has not been tried extensively. We used maize matrix attachment regions (MARs) to bracket an herbicide resistance transgene, bar. MARs have been reported to enhance transgene expression level and stability. We show here that MARs not only enhance transformation efficiency by 50%, but are also able to increase or decrease relative efficiencies of each step of the regeneration process depending on MAR sequence combinations. Furthermore, we assessed the trans-effect of MARs in co-bombardment experiments with two independent plasmids, one including the MAR sequences and the other one the bar gene. As for simple bombardment, MARs enhanced transformation efficiency by having a positive influence on organogenesis step in the regeneration process.  相似文献   

20.
Matrix attachment regions (MARs) are thought to participate in the organization and segregation of independent chromosomal loop domains. Although there are several reports on the action of MARs in the context of heterologous genes, information is more limited on the role of MARs associated with plant genes. Transgenic studies suggest that the upstream, intron and downstream regions of the developmentally regulated heat shock cognate 80 gene (HSC80) of tomato participate in chromatin organization. In this study, we tested the in vitro affinity of the HSC80 gene to chromosomal scaffolds prepared from shoot apices of tomato. We found that a 1.5 kb upstream region and a 1.4 kb downstream region, but not the intron region, are MARs. These MARs interact with tomato and pea scaffolds and bind regardless of the expression status of HSC80 in the tissue from which the nuclei were isolated. Comparison to two known yeast MARs ARS1 and CENIII, showed that the HSC80 5MAR binds more avidly to tomato scaffolds than ARS1, while no binding of CENIII was observed. Competition binding between the two HSC80 MARs indicated that the 5 MAR can outcompete the 3 MAR and not vice versa. Last, we observed that the interaction of the 3 MAR with the scaffold could result in an electrophoretic mobility shift resistant to SDS, protease, and phenol treatment. In conclusion, MARs whose binding properties can be clearly differentiated are closely flanking the HSC80 gene. The discovery of MARs in regions which have a distinct function in HSC80 transgenes but not in transient expression assays, is consistent with a chromosomal scaffold role in HSC80 gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号