首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects. This reduction in antibacterial immune defences is thought to be related to their long-term association with beneficial symbiotic bacteria and to facilitate symbiont maintenance. An additional possibility to avoid elimination of mutualistic symbionts is a fine-tuning of the host immune response. To explore this hypothesis we investigated the existence and potential involvement of immune regulators in aphid agonistic and antagonistic interactions.

Results

In contrast to the limited antibacterial arsenal, we showed that the pea aphid Acyrthosiphon pisum expresses 5 members of Macrophage Migration Inhibitory Factors (ApMIF), known to be key regulators of the innate immune response. In silico searches for MIF members in insect genomes followed by phylogenetic reconstruction suggest that evolution of MIF genes in hemipteran species has been shaped both by differential losses and serial duplications, raising the question of the functional importance of these genes in aphid immune responses. Expression analyses of ApMIFs revealed reduced expression levels in the presence, or during the establishment of secondary symbionts. By contrast, ApMIFs expression levels significantly increased upon challenge with a parasitoid or a Gram-negative bacteria. This increased expression in the presence of a pathogen/parasitoid was reduced or missing, in the presence of facultative symbiotic bacteria.

Conclusions

This work provides evidence that while aphid’s antibacterial arsenal is reduced, other immune genes widely absent from insect genomes are present, diversified and differentially regulated during antagonistic or agonistic interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-762) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
We have previously elucidated a new paradigm for the metal ion-induced helix-helix assembly in the natural γ-carboxyglutamic acid (Gla)-containing class of conantokin (con) peptides, typified by con-G and a variant of con-T, con-T[K7Gla], independent of the hydrophobic effect. In these “metallo-zipper” structures, Gla residues spaced at i, i + 4, i + 7, i + 11 intervals, which is similar to the arrangement of a and d residues in typical heptads of coiled-coils, coordinate with Ca2+ and form specific antiparallel helical dimers. In order to evaluate the common role of Gla residues in peptide self-assembly, we extend herein the same Gla arrangement to designed peptides: NH2-(γLSγEAK)3-CONH2 (peptide 1) and NH2-γLSγEAKγLSγQANγLSγKAE-CONH2 (peptide 2). Peptide 1 and peptide 2 exhibit no helicity alone, but undergo structural transitions to helical conformations in the presence of a variety of divalent cations. Sedimentation equilibrium ultracentrifugation analyses showed that peptide 1 and peptide 2 form helical dimers in the presence of Ca2+, but not Mg2+. Folding and thiol-disulfide rearrangement assays with Cys-containing peptide variants indicated that the helical dimers are mixtures of antiparallel and parallel dimers, which is different from the strict antiparallel strand orientations of con-G and con-T[K7γGla] dimers. These findings suggest that the Gla arrangement, i, i + 4, i + 7, i + 11, i + 14, plays a key role in helix formation, without a strict adherence to strand orientation of the helical dimer.  相似文献   

4.
The integrase protein (Int) of phage lambda is a well-studied representative of the tyrosine recombinase family, whose defining features are two sequential pairs of DNA cleavage/ligation reactions that proceed via a 3' phosphotyrosine covalent intermediate to first form and then resolve a Holliday junction recombination intermediate. We devised an assay that takes advantage of DNA hairpin formation at one Int target site to trap Int cleavages at a different target site, and thereby reveal iterative cycles of cleavage and ligation that would otherwise be undetected. Using this assay and others to compare wild-type Int and a mutant (R169D) defective in forming proper dimer/tetramer interfaces, we found that the efficiency of "bottom-strand" DNA cleavage by wild-type Int, but not R169D, is very sensitive to the base-pair at the "top-strand" cleavage site, seven base-pairs away. We show that this is related to the finding that hairpin formation involving ligation of a mispaired base is much faster for R169D than for wild-type Int, but only in the context of a multimeric complex. During resolution of Holliday junction recombination intermediates, wild-type Int, but not R169D, is very sensitive to homology at the sites of ligation. A long-sought insight from these results is that during Holliday junction resolution the tetrameric Int complex remains intact until after ligation of the product helices has been completed. This contrasts with models in which the second pair of DNA cleavages is a trigger for dissolution of the recombination complex.  相似文献   

5.
Chanda P  Zhang A  Ramanathan M 《Heredity》2011,107(4):320-327
To develop a model synthesis method for parsimoniously modeling gene-environmental interactions (GEI) associated with clinical outcomes and phenotypes. The AMBROSIA model synthesis approach utilizes the k-way interaction information (KWII), an information-theoretic metric capable of identifying variable combinations associated with GEI. For model synthesis, AMBROSIA considers relevance of combinations to the phenotype, it precludes entry of combinations with redundant information, and penalizes for unjustifiable complexity; each step is KWII based. The performance and power of AMBROSIA were evaluated with simulations and Genetic Association Workshop 15 (GAW15) data sets of rheumatoid arthritis (RA). AMBROSIA identified parsimonious models in data sets containing multiple interactions with linkage disequilibrium present. For the GAW15 data set containing 9187 single-nucleotide polymorphisms, the parsimonious AMBROSIA model identified nine RA-associated combinations with power >90%. AMBROSIA was compared with multifactor dimensionality reduction across several diverse models and had satisfactory power. Software source code is available from http://www.cse.buffalo.edu/DBGROUP/bioinformatics/resources.html. AMBROSIA is a promising method for GEI model synthesis.  相似文献   

6.
Ions bound near the external mouth of the potassium channel pore impede the C-type inactivation conformational change (Lopez-Barneo, J., T. Hoshi, S. Heinemann, and R. Aldrich. 1993. Receptors Channels. 1:61– 71; Baukrowitz, T., and G. Yellen. 1995. Neuron. 15:951–960). In this study, we present evidence that the occupancy of the C-type inactivation modulatory site by permeant ions is not solely dependent on its intrinsic affinity, but is also a function of the relative affinities of the neighboring sites in the potassium channel pore. The A463C mutation in the S6 region of Shaker decreases the affinity of an internal ion binding site in the pore (Ogielska, E.M., and R.W. Aldrich, 1998). However, we have found that this mutation also decreases the C-type inactivation rate of the channel. Our studies indicate that the C-type inactivation effects observed with substitutions at position A463 most likely result from changes in the pore occupancy of the channel, rather than a change in the C-type inactivation conformational change. We have found that a decrease in the potassium affinity of the internal ion binding site in the pore results in lowered (electrostatic) interactions among ions in the pore and as a result prolongs the time an ion remains bound at the external C-type inactivation site. We also present evidence that the C-type inactivation constriction is quite local and does not involve a general collapse of the selectivity filter. Our data indicate that in A463C potassium can bind within the selectivity filter without interfering with the process of C-type inactivation.  相似文献   

7.
Here we report the presence of Spiroplasma 16S rRNA in populations of two parasitic Leptus mites (Leptus sayi; Leptus lomani) and their Agathemera walking stick hosts. In walking sticks Spiroplasmas were detected in the gut, as well as muscle-tissues, but not in eggs. Throughout Argentina 15.4% of L. sayi populations and 14.3% of L. lomani populations surveyed screened positive for Spiroplasma. Phylogenetic analyses (ML, BCMC) place all sequences within the Ixodetis group. Most sequences form a well-supported sister subclade to the rest of Ixodetis. We briefly discuss the role of Leptus mites in the natural transmission of Spiroplasma.  相似文献   

8.
Hybrids have often been labelled evolutionary dead-ends due to their lower fertility and viability. However, there is growing awareness that hybridisation between different species may play a constructive role in animal evolution as a means to create variability. Thus, hybridisation and introgression may contribute to adaptive evolution, for example with regards to natural antagonists (parasites, predators, competitors) and adaptation to local environmental conditions. Here we investigated whether parasite intensity contributes to the continuous recreation of hybrids in 74 natural populations of Melanopsis, a complex of freshwater snails with three species. We also examined, under laboratory conditions, whether hybrids and their parental taxa differ in their tolerance of low and high temperatures and salinity levels. Infections were consistently less prevalent in males than in females, and lower in snails from deeper habitats. Infection prevalence in hybrids was significantly lower than in the parental taxa. Low hybrid infection rates could not be explained by sediment type, snail density or geographic distribution of the sampling sites. Interestingly, infected hybrid snails did not show signs of parasite-induced gigantism, whereas all parental taxa did. We found that hybrids mostly coped with extreme temperatures and salinity levels as well as their parental taxa did. Taken together, our results suggest that Melanopsis hybrids perform better in the presence of parasites and environmental stress. This may explain the widespread and long-term occurrence of Melanopsis hybrids as evidenced by paleontological and biogeographic data. Hybridisation may be an adaptive host strategy, reducing infection rates and resisting gigantism.  相似文献   

9.
Antimicrobial peptides (AMPs) are multifunctional components of the innate systems of both insect and mammalian hosts of the pathogenic trypanosomatids Leishmania and Trypanosoma species. Structurally diverse AMPs from a wide range of organisms have in vitro activity against these parasites acting mainly to disrupt surface-membranes. In some cases AMPs also localize intracellularly to affect calcium levels, mitochondrial function and induce autophagy, necrosis and apoptosis. In this review we discuss the work done in the area of AMP interactions with trypanosomatid protozoa, propose potential targets of AMP activity at the cellular level and discuss how AMPs might influence parasite growth and differentiation in their hosts to determine the outcome of natural infection.  相似文献   

10.
11.
Conservation of naturally sympatric endangered species requires unique considerations. While impacts of invasive species garner much attention, interactions between endangered species must also be managed. The endangered Leon Springs pupfish, Cyprinodon bovinus, has suffered a population decline due to decreasing natural habitat. As breeding habitat is lost, C. bovinus is also adversely affected by the sympatric, endangered Pecos gambusia, Gambusia nobilis. Here, we document interactions between these species, finding significantly more G. nobilis accumulated at pupfish spawning events than randomly distributed on breeding grounds in the absence of spawning. As a known egg predator, our results suggest that G. nobilis presence at spawnings may further decrease pupfish numbers while also altering the evolutionary dynamics of C. bovinus breeding tactics. Habitat restoration may decrease Gambusia concentrations or influence C. bovinus breeding behaviour and increase the number of territorial males resulting in viable population sizes for both critically endangered fishes.  相似文献   

12.
Meloidogyne incognita (Mi) and Rotylenchulus reniformis (Rr) interactions on sweet potato were studied in naturally and artificially infested field plots for 3 years. In a naturally infested field, early season counts of Mi or Rr were positively correlated with later counts of the same nematode, but negative correlations were found between early Mi and subsequent Rr, and early Rr and subsequent Mi counts. In field plots fumigated with methyl bromide and then infested with low levels of Rr, Mi, and Rr + Mi, final population densities of Mi juveniles were reduced by Rr, but Rr was not affected by Mi. In field plots with a high natural population density of Rr, artificial infestation with high levels of Mi in both fumigated and nonfumigated treatments inhibited Rr, while the final Mi juvenile population density was not affected. Results indicate that a competitive interaction exists with each species capable of inhibiting the other and becoming the dominant population. The nematodes had no apparent effect on yield at the inoculum densities used, either alone or mixed. Both nematodes increased cracking of sweet potatoes, but mixed populations did not differ in incidence of cracking from either Rr or Mi alone.  相似文献   

13.
Among the numerous anti-herbivore defences developed by macroalgae, chemical and morphological traits are best documented and understood. Plant defence theory suggests that these resistances, which can either be constitutive or inducible, are associated with metabolic costs. They should therefore be impaired under conditions of energy limitation, but evidence for this prediction is scarce. In two subsequent experiments, we tested whether a reduction of light availability is changing feeding rates of the two mesoherbivores Idotea ochotensis and Lacuna smithii on the red alga Chondrus yendoi. Algal individuals were kept in outdoor mesocosm facilities for 10 days, during which we manipulated the amount of incoming sunlight at 6 levels (0%-99% reduction, i.e. 2000-20 μmol s− 1 m− 2). Orthogonal to this, we established the presence or absence of one of the herbivores to test whether C. yendoi can generate a defence. Algal palatability was investigated afterwards in no-choice feeding assays using naïve grazer individuals. The consumption of algal tissue in L. smithii increased with decreasing light, while this was not the case for I. ochotensis. However, we found a defence induced as a reaction to herbivory only by the highly mobile isopod but not when the slowly moving snail grazed on C. yendoi. Isopod total consumption rates in our experiments were 40 times higher than those of the gastropods. We therefore suggest that C. yendoi exhibits grazer-specific reactions to herbivory, depending on the mobility and voracity of the consumers. Interestingly, only for one of the grazers, i.e. the snail, short-term light reduction influenced the palatability of algal tissue. We discuss different but not mutually exclusive models that could explain this pattern. In conclusion, we view this three-species system as an illustrative example for specificity in grazer-algal interactions and their modification by environmental stress.  相似文献   

14.
15.
The interplay between vector and pathogen is essential for vector-borne disease transmission. Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel disease control mechanisms. A pathogen often needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod vector elicites immune responses that can severely limit transmission success. One important step in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis, inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated process, which requires molecules on the surface of the pathogen and salivary gland. In most cases, the nature of these molecules remains unknown. Recent advances in our understanding of malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate molecules on the salivary gland surface function as docking receptors for malaria parasites.  相似文献   

16.
17.
Mixed pathogenic infections are known to have profound effects on the ecological and evolutionary diversity of both hosts and parasites. Although a variety of mechanisms have been proposed by which hosts can withstand parasitic infections, the role of multiple infections and the trade-off in multiple defence strategies remain relatively unexplored. We develop a stage-structured host-pathogen model to explore the ecological and evolutionary dynamics of host resistance to different modes of infection. In particular, we investigate how the evolution of resistance is influenced through infection by a lethal pathogen and a non-lethal synergist (that only acts to enhance the infectivity of the pathogen). We extend our theoretical framework to explore how trade-offs in the ability to withstand infection by the lethal pathogen and the ability to tolerate the synergist affect the likelihood of coexistence and the evolution of polymorphic host strategies. We show how the underlying structure of the trade-off surface is crucial in the maintenance of resistance polymorphisms. Further, depending on the shape of the trade-off surface, we predict that different levels of host resistance will show individual responses to the presence of non-lethal synergists. Our results are discussed in the wider context of recent developments in understanding the evolution of resistance to pathogen infections and resistance management.  相似文献   

18.
Teleost fin ray bifurcations are characteristic of each ray in each fin of the fishes. Control of the positioning of such morphological markers is not well understood. We present evidence suggesting that the interray blastema is necessary for a proper bifurcation of each ray during regeneration in Danio rerio (Hamilton-Buchanan) (Cyprinidae, Teleostei). We performed single ray ablations, heterotopical graftings of ray fragments and small holes in lateral rays which do not normally bifurcate, to generate recombinants in which the lateral rays are surrounded with ectopic interrays originating from different positions within the tail fin. These ray-interray recombinants do now bifurcate. Furthermore, we show that the interray tissue and surrounding epidermis can modulate the length of the ray. These results stress the role of the interray in inducing bifurcations of the ray blastema as well as modulating ray morphogenesis in general. In addition, gene expression analysis under these experimental conditions suggests that msxA and msxD expression in the ray and interray epidermis is controlled by the ray blastema and that bmp4 could be a candidate signal involved in these inductions.  相似文献   

19.
In this study, evidence of novel, important interactions between a hyperactive Tn5 transposon recognition end sequence and hyperactive Tn5 transposase (Tnp) are presented. A hyperactive Tn5 end sequence, the mosaic end (ME), was isolated previously. The ME and a wild-type end sequence, the outside end (OE), differ at only three positions, yet transposition on the ME is tenfold higher than on the OE in vivo. Also, transposition on the ME is much more efficient than transposition on the OE in vitro. Here, we show that the decreased activity observed for the OE is caused by a defect in paired ends complex (PEC) formation resulting from the orientation of the A-T base-pair at position 4 of this end. Efficient PEC formation requires an interaction between the C5-methyl group (C5-Me) on the non-transferred strand thymine base at position 4 (T4) and Tnp. PEC formation on nicked substrates is much less affected by the orientation of the A-T base-pair at position 4, indicating that the C5-Me group is important only for steps preceding nicking. A recently determined co-crystal structure of Tn5 Tnp with the ME is discussed and a model explaining possible roles for the base-pair at position 4 is explored.  相似文献   

20.
Climatic fluctuations usually change the intensity of existing interactions. Thus, in the context of the global climate change, it is important to consider new potential interactions or changes that may appear. Heavy rainy periods (one of the consequences of global climate change in eastern-central Argentina) can promote flooding in some estuaries (mainly on coastal lagoons), and thus, affect interactions between species. In this work we investigate if climatic fluctuations can affect Spartina densiflora Brong. (dominant marsh plant) survival through a chain of biotic and abiotic interactions in a SW Atlantic costal lagoon (37° 40′S, 57° 23′W; Mar Chiquita, Argentina). To achieve this, the long-term rainfall behavior of this region, and the effect of rainy periods on submergence of estuarine marsh areas (using satellite images) were analyzed. Then, the effect of flooding on the activity of the dominant herbivore of this system, the burrowing crab Neohelice granulata (= Chasmagnathus granulatus), was studied using pitfall traps. Finally, the effect of flooding on crab herbivory rates and plant survival were analyzed using transplants, stem-marking and flooding experiments. Long-term rainfall behavior showed that mean annual rainfall has increased during the last century, with the occurrence of more rainy years, and increases in cumulative monthly rainfall increased the submerged area of the S. densiflora marsh. Also, crab activity in the marsh largely increased during periods of flooding, associated with more than 100% increments in herbivory rates and stem mortality. These results reveal that increments in rainfall regime can trigger a cascade of abiotic and biotic interactions leading to increased marsh mortality, and stresses the importance of considering both, biotic and abiotic factors, together to predict changes in community organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号