首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The twisting and writhing during growth of single-cell filaments of Bacillus subtilis which lead to macrofiber formation was studied in both left- and right-handed forms of strains FJ7 and RHX. Filament bending, touching, and loop formation (folding), followed by winding up into a double-strand fiber, were documented. Subsequent folds that produced multistrandedness were also examined. The rate of loop rotation during winding up was measured for 26 loops from 16 clones. In most cases, the first loop formed turned at a lower rate than those produced by the following cycles of folding. The sequence of folding topologies differed in FJ7 and RHX strains and in left- versus right-handed structures. Right-handed FJ7 routinely gave rise to four-stranded helices at the second fold, whereas left-handed FJ7 and both left-handed and right-handed forms of RHX made structures with predominantly two double-stranded helical regions. Left-handed RHX structures frequently produced second folds within the initial loop itself, resulting in T- or Y-shaped fibers. Sixteen cases in which the initial touch of a filament to itself produced a loop that snapped open before it could wind up into a double-strand fiber were found. The snap motions were used to obtain estimates of the forces generated by helical growth of single filaments and to investigate theoretical models involving the material properties of cell filaments. In general, the mechanical behavior of growing single-cell filaments and fibers consisting of two-, three-, or four-strand helices was similar to that described for larger, mature, multifilament macrofibers. The behavior of multicellular macrofibers can be understood, therefore, in terms of individual cell growth.  相似文献   

2.
Sickle cell hemoglobin macrofibers are an important intermediate in the low pH crystallization pathway of deoxygenated hemoglobin S that link the fiber to the crystal. Macrofibers are a class of helical particles differing primarily in their diameters but are related by a common packing of their constituent subunits. We have performed three-dimensional reconstructions of three types of macrofibers. These reconstructions show that macrofibers are composed of rows of Wishner-Love double strands in an arrangement similar to that in the crystal. We have measured the orientation and co-ordinates of double strands in macrofibers using cross-correlation techniques. In this approach, the electron density projections of double strands calculated from the known high-resolution crystal structure are compared with regions along the length of the particles in which the distinct pattern of double strands in c-axis projection may be observed. Contrary to assertions by Makinen & Sigountos (1984), our results unambigously demonstrate that adjacent rows of double strands in macrofibers are oriented in an antiparallel manner, as in the Wishner-Love crystal. Adjacent rows of antiparallel double strands are displaced along the helical axis relative to their co-ordinates in the crystal. Electron density models of macrofibers based on the crystallographic structure of the sickle hemoglobin double strand are in good agreement with the projections of macrofibers observed in electron micrographs. We have studied the structure of a closely related crystallization intermediate, the sickle hemoglobin paracrystal. The arrangement of double strands in paracrystals is similar to that in Wishner-Love crystals, except that they are displaced along the a-axis of the crystal. Measurements of the double strand co-ordinates reveal that the distribution of strand positions is bimodal. These results further establish the close structural relationship between macrofibers and paracrystals as intermediates in the crystallization of deoxygenated sickle hemoglobin.  相似文献   

3.
The steady-state twist of Bacillus subtilis macrofibers produced by growth in complex medium was found to vary as a function of the magnesium and ammonium concentrations. Four categories of macrofiber-producing strains that differed in their response to temperature regulation of twist were studied. Macrofibers were cultured in the complex medium TB used in previous experiments and in two derivative media, T (consisting of Bacto Tryptose), in which most strains produced left-handed structures, and Be (consisting of Bacto Beef Extract), in which right-handed macrofibers arose. In nearly all cases, increasing concentrations of magnesium led to the production of macrofibers with greater right-handed twist. Some strains unable to form right-handed structures as a function of temperature could be made to do so by the addition of magnesium. Inversion from right- to left-handedness in strain FJ7 induced by temperature shift-up was blocked by the addition of magnesium. The presence of magnesium during a high-temperature pulse did not block the establishment of "memory," although it delayed the initiation of the transient inversion following return to low temperature. The twist state of macrofibers grown without a magnesium supplement was not instantaneously affected by the addition of magnesium. Such fibers were, however, protected from lysozyme attack and associated relaxation motions. Lysozyme degradation of purified cell walls (both intact and lacking teichoic acid) was also blocked by the addition of magnesium. Ammonium ions influenced macrofiber twist development towards the left-hand end of the twist spectrum. Macrofiber twist produced in mixtures of magnesium and ammonium was strain and medium dependent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Twist states of Bacillus subtilis macrofibers were found to vary as a function of the concentration of D-alanine in the medium during growth. L-Alanine in the same concentration range had no effect. Increasing concentrations of D-alanine resulted in structures progressively more right-handed (or less left-handed). All strains examined in this study, including mutants fixed in the left-hand domain as a function of temperature, responded to D-alanine in the same way. All twist states from tight left- to tight right-handedness could be achieved solely by varying the D-alanine concentration. The D-alanine-requiring macrofiber strain 2C8, which carries a genetic defect (dal-1) in the alanine racemase, behaved in a similar fashion. The combined effects of D-alanine and ammonium sulfate (a factor known to influence macrofiber twist development in the leftward direction) were examined by using both strains able to undergo temperature-induced helix hand inversion and others incapable of doing so. In all cases, the effects of D-alanine predominated. A synergism was found in which increasing the concentration of ammonium sulfate in the presence of D-alanine enhanced the right-factor activity of the latter. A D-alanine pulse protocol provided evidence that structures undergo a transient inversion indicative of "memory." Chloramphenicol treatment inhibited the establishment of memory in the D-alanine-induced right to left inversion, supporting the existence of a "left twist protein(s)" that is required for the attainment of left-handed twist states. Chemical analysis of cell walls obtained from right- and left-handed macrofibers produced in the presence and absence of D-alanine, respectively, failed to reveal twist state-specific differences in the overall composition of either peptidoglycan or wall teichoic acids.  相似文献   

5.
Factors governing the morphogenesis of Bacillus subtilis colonies as well as the spatial-temporal pattern of expression of a reporter gene during colony development were examined by systematically varying the initial nutrient levels and agar concentrations (wetness), the relative humidity throughout incubation, and the genotype of the inoculum. A relationship between colony form and reporter gene expression pattern was found, indicating that cells respond to local signals during colony development as well as global conditions. The most complex colony forms were produced by motile strains grown under specific conditions such that cells could swim within the colony but not swarm outward uniformly from the colony periphery. The wetness of the growth environment was found to be a critical factor. Complex colonies consisted of structures produced by growth of finger-like projections that expanded outward a finite distance before giving rise to a successive round of fingers that behaved in a similar fashion. Finger tip expansion occurred when groups of cells penetrated the peripheral boundary. Although surfactin production was found to influence similar colony forms in other B. subtilis strains, the strains used here to study reporter gene expression do not produce it. The temporal expression of a reporter gene during morphogenesis of complex colonies by motile strains such as M18 was investigated. Expression arose first in cells located at the tips of fingers that were no longer expanding. The final expression pattern obtained reflects the developmental history of the colony.  相似文献   

6.
A search was made for the genes responsible for the production of helical macrofibers in the original collection of macrofiber-producing strains of B. subtilis. Two loci were identified: fibA, located between hisA and tag-1, and fibB, linked to cysB. fibA governs a short-lived division suppression phenomenon associated with the production of rudimentary fibers, whereas fibB appears to be responsible for a persistent division suppression and a more highly organized helical macrofiber. Both mutations are recovered from each of the original macrofiber-producing strains which also carried the div IV-B1 mutation responsible for minicell production. The latter mutation by itself is not sufficient, however, for the production of macrofibers. Other known mutations leading to division suppression that map in the same region are shown not to be allelic to fibA or fibB. Neither fib locus appears to be responsible for helix hand determination.  相似文献   

7.
Inversion of helix orientation in Bacillus subtilis macrofibers   总被引:10,自引:6,他引:4       下载免费PDF全文
The ability of helical macrofibers of Bacillus subtilis to convert from left- to right-handed structures or vice versa has been known to be controlled by the nutritional environment (N. H. Mendelson, Proc. Natl. Acad. Sci. U.S.A., 75:2478-2482, 1978). lyt mutants (Ni15, FJ3, FJ6, and FJ7) and also lyt phenocopies of wild-type strain FJ8 were able to undergo helix hand inversion as a function of temperature. The transition between right- and left-handed structures was in a very narrow range (about 2.5 degrees C) in the low to mid-40 degrees C. The helix orientation of these strains was also influenced by the concentration of divalent ions. Macrofiber handedness is governed, therefore, by at least four factors: genetic composition, temperature, and nutritional and ionic environments. Conditions normally used for growth fall, within this matrix, in the region favoring right-handed structures. Inhibition studies suggest that cell growth must occur for helix hand inversion.  相似文献   

8.
Helical Bacillus subtilis macrofibers are highly ordered structures consisting of individual cells packed in a geometry remarkably similar to that found in helically twisted yarns (G. A. Carnaby, in J. W. S. Hearle et al., ed., The Mechanics of Flexible Fibre Assemblies, p. 99-112, 1980; N. H. Mendelson, Proc. Natl. Acad. Sci. U.S.A. 75:2478-2482, 1978). The growth and formation of macrofibers were studied with time-lapse microscopy methods. The basic growth mode consisted of fiber elongation, folding, and the helical wrapping together of the folded portion into a tight helical fiber. This sequence was reiterated at both ends of the structure, resulting in terminal loops. Macrofiber growth was accompanied by the helical turning of the structure along its long axis. Right-handed structures turned clockwise and left-handed ones turned counterclockwise when viewed along the length of a fiber looking toward a loop end. Helical turning forced the individual cellular filaments into a close-packing arrangement during growth. Tension was evident within the structures and they writhed as they elongated. Tension was relieved by folding, which occurred when writhing became so violent that the structure touched itself, forming a loop. When the multistranded structure produced by repeated folding cycles became too rigid for additional folding, the morphogenesis of a ball-like structure began. The dynamics of helical macrofiber formation was interpreted in terms of stress-strain deformations. In view of the similarities between macrofiber structures and those found in multifilament yarns and cables, the physics of helical macrofiber structure and also growth may be suitable for analysis developed in these fields concerning the mechanics of flexible fiber assemblies (C. P. Buckley; J. W. S. Hearle; and J. J. Thwaites, in J. W. S. Hearle et al., ed., The Mechanics of Flexible Fibre Assemblies, p. 1-97, 1980).  相似文献   

9.
The kinetics of Bacillus subtilis macrofiber helix hand inversion was examined. Inversion was induced by transfer of structures produced in one medium to another medium. When cultured at 20 degrees C in either medium, the doubling time was approximately 100 min. To establish a baseline, the macrofiber twist state produced in one medium was measured over the same time course during which other macrofibers underwent inversion after transfer to a second medium. The baseline was used to identify the time of inversion initiation: the point at which curves representing changes of twist as a function of time after transfer to the new medium intersected the baseline. Right- and left-handed macrofibers of different twists were produced by growth in mixtures of TB and S1 media. These were used to determine the influence of initial twist on the time course of inversion initiation. In the right to left inversion, a positive correlation was found between initial twist and the time of inversion initiation. The left to right inversion differed, however, in that a constant time was required for inversion initiation regardless of the starting left-handed twist. When a nutritional pulse was administered by transferring fibers from TB to S1 to TB medium, the time to initiation of inversion was found to decrease with incubation of increasing duration in S1 medium. A similar pulse protocol was used in conjunction with inhibitors to examine the protein and peptidoglycan synthesis requirements for the establishment of nutrition-induced memory that leads to initiation of inversion. Nutritionally induced right to left inversion but not left to right inversion required protein synthesis. The addition of trypsin to left-handed macrofibers apparently required, as described previously for the temperature-regulated twist system (D. Favre, D. Karamata, and N. H. Mendelson, J. Bacteriol. 164:1141-1145, 1985), for the production of left-handed twist states in the nutrition system.  相似文献   

10.
Changes in colony morphology were associated with the degeneration of solvent-producing strains of Clostridium acetobutylicum. The most efficient solvent-producing strains gave rise exclusively to colonies with dense centers containing large numbers of spores. Many outgrowths of various morphologies developed from the perimeter of such colonies after several days of incubation. The most degenerate cultures did not produce solvents and gave rise to large diffuse colonies that did not contain spores. These diffuse colonies did not produce outgrowths. Intermediate colony types were also observed. These could be derived from liquid cultures that were relatively poor solvent producers or from the outgrowths of colonies of efficient solvent-producing strains. Some of these intermediate types produced spores but did so less frequently than the high-solvent-producing strains. The spores of the intermediate types could not be distinguished from those of the most efficient solvent producers on the basis of heat sensitivity. The relationship observed between colony morphology and solvent production provides a method for predicting the solvent-producing potential of C. acetobutylicum cultures.  相似文献   

11.
Comparative characteristics of sporogenous and asporogenous Bacillus thuringiensis strains is carried out. Asporogenous strains are found to differ from wild type strains in a number of criteria, including colony morphology, character of growth on rich and poor media and UV-sensitivity. Sporogenous strains form R colonies, they are more stable and more rare produce variants forming S colonies. S colonies are typical for asporogenous mutants, and under the cultivation in unfavourable conditions (elevated temperature, a shift of pH, a change of an incubation regime) asporogenous strains dissociate with a high frequency into R form. Initial strains, which are multiple auxotrophs, under certain conditions can form "prototrophic" revertants which are unstable when incubated on rich media. Suppressor mutation is supposed to be a possible mechanism of the origination of "prototrophs".  相似文献   

12.
Non-glycine residues in proteins are rarely observed to have "left-handed helical" conformations. For glycine, however, this conformation is common. To determine the contributions of left-handed helical residues to the stability of a protein, two such residues in phage T4 lysozyme, Asn55 and Lys124, were replaced with glycine. The mutant proteins fold normally and are fully active, showing that left-handed non-glycine residues, although rare, do not have an indispensable role in the folding of the protein or in its activity. The thermodynamic stability of the Lys124 to Gly variant is essentially identical with that of wild-type lysozyme. The Asn55 to Gly mutant protein is marginally less stable (0.5 kcal/mol). These results indicate that the conformational energy of a glycine and a non-glycine residue in the left-handed helical conformation are very similar. This is consistent with some theoretical energy distributions, but is inconsistent with others, which suggest that replacements of the sort described here might increase the stability of the protein by up to 5 kcal/mol. Crystallographic analysis of the mutant proteins shows that the backbone conformation of the Lys124 to Gly variant is essentially identical with that of the wild-type structure. In the case of the Asn55 to Gly replacement, however, the (phi, psi) values of residue 55 change by about 20 degrees. This suggests that the energy minimum for left-handed glycine residues is not the same as that for non-glycine residues. This is strongly indicated also by a survey of accurately determined protein crystal structures, which suggests that the energy minimum for left-handed glycine residues is near (phi = 90 degrees, psi = 0 degrees), whereas that for non-glycine residues is close to (phi = 60 degrees, psi = 30 degrees). This apparent energy minimum for glycine is not clearly predicted by any of the theoretical (phi, psi) energy contour maps.  相似文献   

13.
Left- and right-handed Bacillus subtilis macrofibers produced by strains FJ7 and C6D were converted to spheroplasts. Intact cells were regenerated and macrofibers were produced under conditions conducive for production of left- and right-handed structures. The resulting helix hand phenotypes always corresponded to those expected on the basis of the parental genotype.  相似文献   

14.
Gonococci from subcutaneously implanted chambers in guinea pigs produced, on agar, more than 95% small colonies showing a "double highlight" (DH) effect in oblique reflected light combined with transmitted light. Laboratory strains of gonococci produced some DH colonies, but other showed a single highlight (SH) or no highlight (NH). Selection of DH colonies and comparison of their organisms with gonococci grown in vivo and with those from SH colonies, showed that the DH character was associated with high infectivity for guinea-pig chambers, resistance to killing by human phagocytes and heavy pilation. Furthermore, DH colonies were found in the first culture of three fresh samples of urethral pus. Thus, the DH colony characteristic may be a more reliable criterion of pathogenicity of gonococcal isolates than systems used previously. There were, however, some differences between the gonococci grown in vivo and the DH colony types. The gonococci grown in vivo and cultured once on solid medium possessed one or two antigens which differed from those of DH (or SH) colonies. They also formed smooth suspensions (which separated slowly) in saline, compared with the rough suspensions (which separated quickly) formed by gonococci from DH (or SH) colonies. Finally, the organisms grown in vivo were resistant to killing by human serum whereas the DH (and SH) colony types were susceptible; the resistance of the organisms grown in vivo was lost during one subculture on agar suggesting that the property is a phenotypic characteristic. Hence, in addition to selecting DH colony types the conditions in vivo produce organisms which differ, probably phenotypically, from cultured organisms.  相似文献   

15.
Two strains of Saccharomyces carlsbergensis that lacked the plasmid 2mu DNA responded differently when the plasmid was introduced into them. In one strain, cells lacking 2mu DNA ("cir0") produced the normal "smooth" colony morphology, but cells bearing 2mu DNA ("cir+") produced heterogeneous "nibbled" colonies. In the second strain, both cir+ and cir0 strains exhibited a smooth colony morphology. Crosses between these strains revealed that a single recessive nuclear gene, called nibl, conferred the nibbled colony morphology in the presence of 2mu DNA. By a series of backcrosses, nibl was introduced into a Saccharomyces cerevisiae background. nibl caused a nibbled colony morphology in this background just as it did in S. carlsbergensis. nibl was mapped to the left arm of chromosome XVI. Twelve independent smooth revertants were isolated from two nibl [cir+] strains. Seven were analyzed, and all were found to be chromosome VII disomes. Chromosome VII disomy and suppression of the nibbled phenotype cosegregated in crosses. Thus, chromosome VII disomy can suppress the nibbled phenotype. The results of other experiments (C. Holm, Cell 29:585-594, 1982) indicate that the nibbled colony morphology is the result of lethal sectoring and that the lethality is caused by a high copy number of 2mu DNA. I suggest, therefore, that the product of the nibl gene may play a role in controlling the copy number of 2mu DNA. Possible models for the suppression of the nibbled phenotype by chromosome VII disomy are discussed.  相似文献   

16.
Homothallic switching of yeast mating type genes occurs as often as each cell division, so that a colony derived from a single haploid spore soon contains an equal number of MATa and MAT alpha cells. Cells of opposite mating types conjugate, and eventually the colony contains only nonmating MATa/MAT alpha diploids. Mutations that reduce the efficiency of homothallic MAT conversions yield colonies that still contain many haploid cells of the original spore mating type plus a few recently generated cells of the opposite mating type. These (a greater than alpha)- or (alpha greater than a)-mating colonies also contain some nonmating diploid cells. As an alternative to microscopic pedigree analysis to determine the frequency of mating type conversions in a variety of mutant homothallic strains, we analyzed the proportions of MATa, MAT alpha, and MATa/MAT alpha cells in a colony by examining the mating phenotypes of subclones. We developed a mathematical model that described the proportion of cell types in a slow-switching colony. This model predicted that the proportion of nonmating cells would continually increase with the size (age) of a colony derived from a single cell. This prediction was confirmed by determining the proportion of cell types in colonies of an HO swi1 strain that was grown for different numbers of cell divisions. Data from subcloning (a greater than alpha) and (alpha greater than a) colonies from a variety of slow-switching mutations and chromosomal rearrangements were used to calculate the frequency of MAT conversions in these strains.  相似文献   

17.
Subendocardial and subepicardial layers of the left ventricle (LV) are characterized with right- and left-handed helical orientations of myocardial fibers. We investigated the origin of biphasic deformations of the LV wall during isovolumic contraction (IVC) and relaxation (IVR). In eight open-chest adult pigs, strain rates were measured along the right- and left-handed helical directions in the LV anterior wall by implanting 16 sonomicrometry crystals. Sonomicrometry strain rates were compared with the longitudinal subendocardial strain rates obtained by tissue Doppler imaging. During ejection and diastolic filling, shortening and lengthening occurred synchronously along the right- and left-handed helical directions. However, during IVC and IVR, the deformations were dissimilar in the two directions. Transmural shortening during IVC occurred along the right-handed helical direction and was accompanied with transient lengthening in the left-handed helical direction. Conversely, during IVR, the LV lengthened along the left-handed helical direction and shortened in the right-handed helical direction. Peak subendocardial strain rates obtained by tissue Doppler imaging during IVC and IVR correlated with corresponding sonomicrometry strain rate values obtained along the right- and left-handed helical directions (r = 0.81, P < 0.001 and r = 0.70, P = 0.001, respectively). Our data suggest that brief counterdirectional movements occur within the LV wall during IVC and IVR. Shortening along the right-handed helical direction is accompanied with reciprocal lengthening in the left-handed helical direction during IVC and vice versa during IVR. The results support an association between asynchronous deformation of subendocardial and subepicardial muscle fibers and the biphasic isovolumic movements observed with high-resolution tissue Doppler imaging.  相似文献   

18.
Erect helical colony forms have evolved at least six separate times within the Bryozoa, but only among those in which branches are composed of a single layer of feeding zooids. The four best known genera with helical colony forms evolved independently, and each occupied different benthic marine environments, achieved different growth habits, and utilized different aspects of an array of functional potentials resulting from the radially symmetrical colonies. Examination of the distribution of these four genera ( Archimedes , Bugula , Crisidmonea , and Retiflustra ) within a theoretical morphospace of hypothetical helical colony form reveals that each occupies its own characteristic region of morphospace, broadly overlapping in some dimensions but separated in others. The genera differ markedly in the branching densities within their filtration-sheet whorls, reflecting their phylogenetic legacies rather than constructional or functional constraints associated with helical growth. In contrast, all tend toward helices in which the radiating whorls of the unilaminate branches are held at an average of 50–60° to the central axis of the colony, and this may reflect a common functional optimum associated with the cilia-driven, auto-generated currents within the helix. The region of morphospace characterized by high values of surface area – i.e. helical geometries with branches orientated at very low angles to the central axis, and with very closely spaced whorls along the axis – is entirely empty of bryozoans, and these geometries apparently represent functionally unrealistic colony forms.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 235–260.  相似文献   

19.
Eight transgenic strains of Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) were compared with the wild-type parental laboratory strain (P95) in colony. Measurements of average weight of pupae, percentage of adults emerging from pupae, ratio of males to total emerged adults, and mating competitiveness were analyzed. The parental strain colony was subcultured and exposed to handling procedures equivalent to transgenic strains for valid comparison of overall colony fitness. None of the transgenic colonies exhibited significantly lower fitness characteristics than the control parental colony. One transgenic colony had a higher ratio of adults emerging from pupae, and five colonies had higher average pupal weight; because fitness cost would only be indicated by lower values, the statistical variations were not significant. Males of one transgenic strain were shown to mate with equal frequency compared with males of the parental strain. Hence, the presence of the transgene used to produce the strains tested did not incur a fitness cost to the colonies of laboratory-reared C. hominivorax.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号