首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protein kinase D (PKD) family consists of three serine/threonine protein kinases involved in the regulation of fundamental biological processes in response to their activation and intracellular redistribution. Although a substantial amount of information is available describing the mechanisms regulating the activation and intracellular distribution of the PKD isozymes during interphase, nothing is known of their activation status, localization and role during mitosis. The results presented in this study indicate that during mitosis, PKD3 and PKD are phosphorylated at Ser731 and Ser744 within their activation loop by a mechanism that requires protein kinase C. Mitosis-associated PKD3 Ser731 and PKD Ser744 phosphorylation is related to the catalytic activation of these kinases as evidenced by in vivo phosphorylation of histone deacetylase 5, a substrate of PKD and PKD3. Activation loop-phosphorylated PKD3 and PKD, as well as PKD2, associate with centrosomes, spindles and midbody suggesting that these activated kinases establish dynamic interactions with the mitotic apparatus. Thus, this study reveals a connection between the PKD isozymes and cell division, suggesting a novel role for this family of serine/threonine kinases.  相似文献   

2.
We have shown previously that the activity of the long myosin light chain kinase (MLCK) is cell cycle regulated with a decrease in specific activity during mitosis that can be restored following treatment with alkaline phosphatase. To better understand the role and significance of phosphorylation in regulating MLCK function during mitosis, we examined the phosphorylation state of in vivo derived MLCK. Phosphoamino acid analysis and phosphopeptide mapping demonstrate that the long MLCK is differentially phosphorylated on serine residues during interphase and mitosis with the majority of the phosphorylation sites located within the N-terminal IgG domain. Biochemical assays show that Aurora B binds and phosphorylates the IgG domain of the long MLCK. In addition, phosphopeptide maps of the endogenous full-length MLCK from mitotic cells and in vitro phosphorylated IgG domain demonstrate that Aurora B phosphorylates the same sites as those observed in vivo. Altogether, these studies suggest that the long MLCK may be a cellular target for Aurora B during mitosis.  相似文献   

3.
An anti-yeast CKI antiserum was shown to cross-react with CKI isolated from Krebs II mouse ascites tumour cells. The mammalian CKI showed virtually the same molecular mass (app. 45 kDa) as the yeast enzyme. By immunofluorescence it could be shown that CKI is preferably located in the nucleolus.  相似文献   

4.
In human epidermal carcinoma A431 cells, the beta subunit of casein kinase II is phosphorylated at an autophosphorylation site and at serine 209 which can be phosphorylated in vitro by p34cdc2 (Litchfield, D. W., Lozeman, F. J., Cicirelli, M. F., Harrylock, M., Ericsson, L. H., Piening, C. J., and Krebs, E. G. (1991) J. Biol. Chem. 266, 20380-20389). Given the importance of p34cdc2 in the regulation of cell cycle events, we were interested in examining the phosphorylation of casein kinase II during different stages of the cell cycle. In this study it is demonstrated that the extent of phosphorylation of serine 209 in the beta subunit is significantly increased relative to phosphorylation of the autophosphorylation site when chicken bursal lymphoma BK3A cells are arrested at mitosis by nocodazole treatment. This result suggests that serine 209 is a likely physiological target for p34cdc2. In addition, the alpha subunit of casein kinase II also undergoes dramatic phosphorylation with an associated alteration in its electrophoretic mobility when BK3A cells or human Jurkat cells are arrested with nocodazole. Phosphopeptide mapping studies indicate that p34cdc2 can phosphorylate in vitro the same peptides on the alpha subunit that are phosphorylated in cells arrested at mitosis. These phosphorylation sites were localized to serine and threonine residues in the carboxyl-terminal domain of alpha. Taken together, the results of this study indicate that casein kinase II is a probable physiological substrate for p34cdc2 and suggest that its functional properties could be affected in a cell cycle-dependent manner.  相似文献   

5.
RCC1, a guanine nucleotide exchange factor of the small GTPase Ran, plays various roles throughout the cell cycle. However, the functions of RCC1 in biological processes in vivo are still unclear. In particular, although RCC1 has multifunctional domains, the biological significance of each domain is unclear. To examine each domain of RCC1, we established an RCC1 conditional knockout chicken DT40 cell line and introduced various RCC1 mutants into the knockout cells. We found that nuclear reformation did not occur properly in RCC1-deficient cells and examined whether specific RCC1 mutants could rescue this phenotype. Surprisingly, we found that neither the nuclear localization signal nor the chromatin-binding domain of RCC1 is essential for its function. However, codisruption of these domains resulted in defective nuclear reformation, which was rescued by artificial nuclear localization of RCC1. Our data indicate that chromatin association of RCC1 during mitosis is crucial for its proper nuclear localization in the next interphase. Moreover, proper nuclear localization of RCC1 in interphase is essential for its function through its nucleotide exchange activity.  相似文献   

6.
Phosphorylation of the nuclear lamins during interphase and mitosis   总被引:68,自引:0,他引:68  
The nuclear lamina is a polymeric protein assembly that is proposed to function as an architectural framework for the nuclear envelope. Previous work suggested that phosphorylation of the major polypeptides of the lamina (the "lamins") may induce disassembly of this structure during mitosis. To further investigate the possible involvement of phosphorylation in regulation of lamina structure, we characterized lamin phosphorylation occurring in mammalian tissue culture cells during interphase and mitosis. Phosphorylation occurs continuously throughout all interphase periods (coordinately with nuclear envelope growth), and takes place mainly on the assembled lamina. When the lamina is disassembled during cell division, the lamins are modified with approximately 1-2 molecules of associated phosphate. This level of mitotic phosphorylation is 4-7-fold higher than the average interphase level. Lamin phosphate occurs predominantly as phosphoserine, and is distributed over numerous tryptic peptides, many of which are modified during both interphase and mitotic periods. Significantly, phosphorylation is the only detectable charge-altering postsynthetic modification of the lamins that occurs specifically during mitosis. The results of this study support the notion that phosphorylation is important for regulation of interphase and mitotic lamina structure.  相似文献   

7.
Phosphorylation of casein kinase II   总被引:5,自引:0,他引:5  
E Palen  J A Traugh 《Biochemistry》1991,30(22):5586-5590
Casein kinase II from rabbit reticulocytes is a tetramer with an alpha,alpha' beta 2 or alpha 2 beta 2 structure; the alpha subunits contain the catalytic activity, and the beta subunits are regulatory in nature [Traugh, J.A., Lin, W. J., Takada-Axelrod, F., & Tuazon, P. T. (1990) Adv. Second Messenger Phosphoprotein Res. 24, 224-229]. When casein kinase II is isolated from rabbit reticulocytes by a rapid two-step purification of the enzyme, both the alpha and beta subunits are phosphorylated to a significant extent. In vitro, purified casein kinase II undergoes autophosphorylation on the beta subunit. In the presence of polylysine and polyarginine, phosphorylation of the beta subunits is inhibited, and the alpha subunits (alpha and alpha') become autophosphorylated. The effectiveness of polylysine coincides with the molecular weight. With basic proteins, including a number of histones and protamine, autophosphorylation of both subunits is observed. With histones, autophosphorylation of each subunit can be greater than that observed with the autophosphorylated enzyme alone or with a basic polypeptide. Thus, the potential exists for modulatory proteins to alter the autophosphorylation state of casein kinase II. Taken together, the data suggest that phosphorylation of the alpha subunit of casein kinase II in vivo may be due to an unidentified protein kinase or due to autophosphorylation. In the latter instance, casein kinase II could be transiently associated with specific intracellular compounds, such as basic proteins, with a resultant stimulation of autophosphorylation.  相似文献   

8.
The M-phase-specific cdc2 (cell division control) protein kinase (a component of the M-phase-promoting factor) was found to activate casein kinase II in vitro. The increase in casein kinase II activity ranged over 1.5-5-fold. Increase in activity was prevented if ATP was replaced during the activation reaction by a non-hydrolysable analogue. Alkaline phosphatase treatment of the activated enzyme decreased the activity to the basal level. The beta subunit of casein kinase II was phosphorylated by cdc2 protein kinase at site(s) different from the autophosphorylation sites of the enzyme. Phosphoamino acid analysis showed that the beta subunit was phosphorylated by cdc2 protein kinase at threonine residues while autophosphorylation involved serine residues. Casein kinase II may be part of the cascade which leads to increased phosphorylation of many proteins at M-phase and therefore be involved in the pleiotropic effects of M-phase-promoting factor.  相似文献   

9.
The structural basis of mitosis, spindle organisation and chromosome segregation, in the unicellular parasite Trypanosoma brucei is poorly understood. Here, using immunocytochemistry, fluorescent in situ hybridisation and electron microscopy, we provide a detailed analysis of mitosis in this parasite. We describe the organisation of the mitotic spindle during different stages of mitosis, the complex ultrastructure of kinetochores and the identification of a potential spindle-organising centre in the mitotic nucleus. We investigate the dynamics of chromosome segregation using telomeric and chromosome-specific probes. We also discuss the problems involved in chromosome segregation in the light of the fact that the T. brucei karyotype has 22 chromosomes in the apparent presence of only eight ultrastructurally defined kinetochores. Received: 9 August 1999; in revised form: 15 October 1999 / Accepted: 10 November 1999  相似文献   

10.
This study evaluates the regulation of casein kinase II (CK II) activity in resting B cells induced to enter the cell cycle. The induction of B cell cycle progression PMA and ionomycin results in an oscillatory expression of CK II. This kinase activity is also elicited after direct physical interaction between B cells and activated, fixed Th cells, indicating that the increase seen in CK II activity is probably associated with the delivery of the competence-inducing signal to resting B cells. The selective inhibition of ornithine decarboxylase (ODC), the rate-limiting enzyme for polyamine biosynthesis, during PMA and ionomycin-induction of B cell cycle progression, inhibits the expression of CK II activity. The addition of polyamines to cytosolic preparations recovered from cells in which ODC is inhibited results in the appearance of CK II activity, showing that the ODC inhibitor does not directly inhibit the kinase. The treatment of B cells with cycloheximide results in the appearance of CK II activity within 15 min, and this induction is partially explainable by a cycloheximide-elicited increase in cellular levels of polyamines. The artificial elevation of cellular levels of cAMP simultaneous with the addition of PMA and ionomycin results in a 150 to 200% increase in detectable CK II levels, suggesting that the cAMP-dependent signaling cascade may participate during the early regulation of CK II. In contrast, the inhibition of protein kinase C does not adversely influence the early expression of CK II, while actually enhancing kinase activity by 18 h poststimulation.  相似文献   

11.
Induction of a substrate for casein kinase II during lymphocyte mitogenesis   总被引:4,自引:0,他引:4  
Particulate fractions prepared from concanavalin A-activated murine T lymphocytes contain an endogenous protein kinase that phosphorylates an endogenous protein substrate of Mr 112 000. The phosphorylation of 112 kDa protein is greatly reduced or absent in unstimulated T cells. Phosphoamino acid analysis indicates that 112 kDa protein is labeled on a serine. Add-back experiments using purified protein kinases indicate that 112 kDa protein serves as a substrate for casein kinase II. Phosphorylation of 112 kDa protein by the endogenous kinase is inhibited by heparin, a known casein kinase II inhibitor. The site or sites modified by the endogenous kinase and exogenous casein kinase II appear identical by peptide-mapping experiments. A time-course of the appearance of phosphorylated 112 kDa protein following stimulation with concanavalin A, measured in the presence or absence of added casein kinase II, suggests that 112 kDa protein is induced in activated T cells. Subcellular localization studies suggest that 112 kDa protein is a nuclear protein. Silver-binding and purification studies suggest that 112 kDa protein is of the nucleolar organizing region.  相似文献   

12.
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.  相似文献   

13.
Protein kinase casein kinase II (CK II) activity was assayed during Rhodnius prolixus embryogenesis. Vitellin (VT) is the main endogenous substrate during the whole development. It is maximally phosphorylated at the third day of embryogenesis by CK II and then its phosphorylation decreases to a basal level by the time of first instar eclosion. When dephosphorylated casein was used as an exogenous substrate a different profile of enzyme activity was obtained. CK II activity increases on day 1 after fertilization and reaches a plateau on day 7 and its activity remains elevated until eclosion. Extracts obtained from oocytes or from 3-day old eggs were fractionate through gel filtration chromatography. CK II activity was assayed in each fraction and the enzyme obtained from the 3-day old eggs was shown to be three times more active than that obtained from oocytes, although the amount of enzyme present in the fractions was the same. These enriched CK II fractions were assayed against different effectors, such as: cAMP, H-8, H-89, calphostin C, sphingosine, polylysine and heparin. Heparin was the most effective one. When CK II activity was assayed in non-fertilized eggs, no activation of the enzyme was observed when compared to fertilized eggs. These data indicate that CK II is activated in a fertilization dependent process. The decrease in CK II activity against VT coincides with the beginning of VT proteolysis processing suggesting a possible relationship between protein phosphorylation and yolk degradation.  相似文献   

14.
Abstract The activity and cellular localization of hepatic casein kinase II(CKII) was examined during late fetal development in the rat. Cultured fetal hepatocytes displayed constitutive CKII activity which was not further activated by growth factor exposure. Similarly, fetal liver CKII showed approximately fivefold greater activity than adult liver. The fetal hepatic activity was, to a large degree, localized to a nuclear fraction. Postnuclear cytosol preparations from fetal and adult liver showed similar CKII activity. In all cases, FPLC ion exchange chromatography followed by Western immunoblotting showed that immunoreactive CKII coincided with kinase activity. However, Parallel determinations of CKII activity and immunoreactive CKII levels showed a higher(five-to sixfold) CKII specific activity in nuclear extracts compared to cytosol. In summary, fetal hepatic CKII demonstrates coincident nuclear localization and activation. We hypothesize that the regulation of hepatic CKII is relevant to the mitogen-independent proliferation displayed by fetal rat hepatocytes. © Wiley-Liss, Inc.  相似文献   

15.
16.
Association of casein kinase II with microtubules   总被引:11,自引:0,他引:11  
A magnesium-dependent heparin-inhibited protein kinase activity associated with brain microtubule preparations has been identified as casein kinase II using a monospecific polyclonal antibody. This enzyme appears enriched in cold-stable microtubule fractions. By immunofluorescence microscopy using an antiserum against casein kinase II, the in situ immunolabeling of some microtubule assays has been observed. Thus, mitotic spindles are stained by the anti-casein kinase II antibody in fibroblast cells. In neuroblastoma cells induced to differentiate, the labeling of microtubule arrays inside developing axon-like processes is also seen. These results support the view that casein kinase II can modulate cytoskeletal assembly and dynamics through phosphorylation of microtubule proteins.  相似文献   

17.
To investigate the role of protein kinase C (PKC) in the regulation of insulin secretion, we visualized changes in the intracellular localization of alpha-PKC in fixed beta-cells from both isolated rat pancreatic islets and the pancreas of awake unstressed rats during glucose-induced insulin secretion. Isolated, perifused rat islets were fixed in 4% paraformaldehyde, detergent permeabilized, and labeled with a mAb specific for alpha-PKC. The labeling was visualized by confocal immunofluorescent microscopy. In isolated rat pancreatic islets perifused with 2.75 mM glucose, alpha-PKC immunostaining was primarily cytoplasmic in distribution throughout the beta-cells. In islets stimulated with 20 mM glucose, there was a significant redistribution of alpha-PKC to the cell periphery. This glucose-induced redistribution was abolished when either mannoheptulose, an inhibitor of glucose metabolism, or nitrendipine, an inhibitor of calcium influx, were added to the perifusate. We also examined changes in the intracellular distribution of alpha-PKC in the beta-cells of awake, unstressed rats that were given an intravenous infusion of glucose. Immunocytochemical analysis of pancreatic sections from these rats demonstrated a glucose-induced translocation of alpha-PKC to the cell periphery of the beta-cells. These results demonstrate that the metabolism of glucose can induce the redistribution of alpha-PKC to the cell periphery of beta-cells, both in isolated islets and in the intact animal, and suggest that alpha-PKC plays a role in mediating glucose-induced insulin secretion.  相似文献   

18.
DNA binding activity of casein kinase II   总被引:2,自引:0,他引:2  
Casein kinase II, an ubiquitous, oligomeric, messenger-independent protein kinase has previously been shown to concentrate in the nuclear compartment when cells are stimulated to proliferate. The present communication reports that purified mammalian CKII interacts with genomic DNA preparations in vitro. This interaction led to an apparent activation of the kinase, most likely explained by prevention of its aggregation and subsequent denaturation. Binding of CKII was optimum with double stranded DNA preparations; duplex lambda phage DNA exhibited at least two types of binding sites and the high affinity system (Kd approximately equal to 6 x 10(-13) M) represented a binding capacity of about 1 mol CKII per mol DNA. CKII-DNA interaction was stimulated in the presence of a polyamine and inhibited by heparin. Blotting experiments disclosed that DNA binds CKII through its alpha subunit. These observations are in line with the hypothesis that casein kinase II may be examined as a component in the transduction of the mitogenic signal from the cell membrane to the nucleus, in response to growth factors.  相似文献   

19.
Activation of casein kinase II by sphingosine   总被引:2,自引:0,他引:2  
Sphingosine activates casein kinase II in the presence of endogenous substrates as well as a synthetic peptide substrate. The activation response occurred between 12 and 25 micrograms/ml sphingosine and exhibited positive cooperativity with a Hill coefficient of 3.0. Sphingosine not only increased the Vmax of casein kinase II but decreased the Km(app) for the peptide substrate from 0.5 to 0.08 mM. In contrast, the Km(app) for MgCl2 was increased from 0.12 to 0.7 mM. Consequently, sphingosine altered significantly several parameters which determine casein kinase II activity. The effect of sphingosine was relatively specific, inasmuch as related lipids were less potent activators or largely ineffective in stimulating casein kinase II. On the other hand, the effect of sphingosine itself could be potentiated or inhibited by other lipids. Ceramide and sphingosylphosphorylcholine augmented the sphingosine effect. Phospholipids alone did not alter the activity of casein kinase II significantly, but abolished enzyme activation by sphingosine with different potencies (phosphatidylserine greater than phosphatidylethanolamine greater than phosphatidylinositol greater than phosphatidylcholine). Moreover, the sphingosine effect could be abrogated by KCI and NaCl, which alone are known to induce enzyme activation and dissociation of aggregated casein kinase II protein; LiCl and NH4Cl also inhibited the sphingosine effect. Polyamines, known activators of casein kinase II, partially mimicked the effect of sphingosine on endogenous polypeptide phosphorylation but failed to do so with the peptide substrate. These observations demonstrate that sphingosine is a potent activator of casein kinase II. The potential pharmacological and physiological modulation of casein kinase II by sphingoid bases is discussed.  相似文献   

20.
Inhibition of casein kinase II by heparin   总被引:24,自引:0,他引:24  
Casein kinase II, a cyclic nucleotide-independent protein kinase from rabbit reticulocytes, was shown to be inhibited by heparin. Heparin specifically inhibited the enzyme and had no effect on other protein kinases, including casein kinase I, the type I and II cAMP-dependent protein kinases, protease-activated kinase I, and the hemin-controlled repressor. Heparan sulfate was found to be 40-fold less effective than heparin towards casein kinase II; other acid mucopolysaccharides had little or no effect on the enzymatic activity. Steady state studies revealed that heparin acted as a competitive inhibitor with respect to the substrate, casein. A value of 20 ng/ml or about 1.4 nM was obtained for the apparent Ki. The inhibition was not reversed by ATP and varying the ATP and heparin concentrations in the assay only altered the maximum velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号