首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The respective importance of mitochondria and of sarcoplasmic reticulum in the uptake and maintenance of Ca++ by the isolated rat diaphragm has been compared. Diaphragms were incubated at 30° in conditions optimal for Ca++ uptake either by isolated mitochondria or by sarcoplasmic reticulum: more Ca++ was taken up from the “mitochondrial” medium. For maximal uptake, Pi and Mg++ were necessary; substitution of NaCl and KC1 with sucrose had no effect on the uptake. The uptake was markedly inhibited by uncouplers of oxidative phosphorylation, by respiratory inhibitors, and by lowering the temperature of the incubation medium to 0°; it was not affected by oligomycin, aurovertin, DCCD, nor by inhibitors of Ca++ transport in the isolated sarcoplasmic reticulum (ergotamine, ergobasinine, caffeine). The lack of effect of caffeine was not due to lack of penetration into the muscle. Permeability barriers for ergotamine and ergobasinine could not be excluded. The maintenance of Ca++ by the diaphragm was optimal in a medium contaming Pi and Mg++. Uncoupling agents and respiratory inhibitors accelerated the rate and extent of release of Ca++ by the diaphragm. Lowering the temperature of the incubation medium to 0°, or addition of oligomycin, aurovertin, DCCD, had no effect on the release. The release of Ca++ was also unaffected by ergotamine, ergobasinine, caffeine. The results suggest a role for mitochondria in the uptake and maintenance of Ca++ by the isolated diaphragm.  相似文献   

2.
The effect of direct electrical stimulation on suspensions of sarcoplasmic reticulum membrane fragments (SRF) was carefully re-examined using the method of Lee et al. (1966) J. Gen. Physiol. 49:689. Inhibition of Ca++ uptake or release by electrical stimulation was observed. When platinum electrodes were used as stimulating electrodes, the effect was dependent on the total current passed through the suspension. On the contrary, when silver-silver chloride electrodes were used, no effect was observed even if voltage and current were the same as in the case of the platinum electrodes. In addition, apparent re-uptake of Ca++ after cessation of electrical stimulation using platinum electrodes was shown to be due to a binding of Ca++ to denatured SRF which did not require an energy supply such as ATP, although such re-uptake had been taken as strong evidence of electrical response of SRF in Lee's paper. Finally, it was concluded that the effect of electrical stimulation on SRF was attributable to the irreversible denaturation of SRF due to the oxidation caused by the chlorine generated at the platinum electrode.  相似文献   

3.
An electrometric system was used to measure Ca++ uptake by sarcoplasmic reticulum vesicles (SR). The method permits continuous recording of Ca++ uptake and thus the valuation of kinetic parameters. Furthermore, the ultrasensitivity of the method permits to follow changes in Ca++ concentration below 10?6 M.  相似文献   

4.
The effect of archidonic, oleic and linoleic acid on calcium uptake and release by sarcoplasmic reticulum isolated from longissimus dorsi muscle was investigated using a Ca2+ electrode. All three long chain fatty acids stimulated the release of Ca2+ from sacroplasmic reticulum when added after exogenous Ca2+ was accumulated by the vesicles, and also inhibited Ca2+ uptake when added before Ca2+. This inhibitory effect on the calcium transport by arachidonic, oleic and linoleic acid was prevented by bovine serum albumin through its ability to bind with the fatty acid. The order of effectiveness of the fatty acids in inhibiting calcium transport by isolated sarcoplasmic reticulum was arachidonic acid> oleic acid > linoleic acid. Similar inhibition of calcium uptake and induction of calcium release by arachidonic acid was observed in muscle homogenate sarcoplasmic reticulum preparations. Both arachidonic and oleic acid stimulated the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum at low concentrations, but inhibited the (Ca2+ + Mg2+)-ATPase activity at high concentrations. The maximal (Ca2+ + Mg2+-ATPase activity observed with arachidonic acid was twice that obtained with oleic acid, but the concentration of arachidonic acid required was 3–4-times greater than that of oleic acid. The concentration of arachidonic acid required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity was 3.6-times greater than that needed for complete inhibition of calcium accumulation by the sacroplasmic reticulum. With oleic acid, however, the concentration required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity inhibited the sarcoplasmic reticulum Ca2+ accumulation by 72%. The present data support our hypothesis that, in porcine malignant hyperthermia, unsaturated fatty acids from mitochondrial membranes released by endogenous phospholipase A2 would induce the sarcoplasmic reticulum to release calcium (Cheah K.S. and Cheah, A.M. (1981) Biochim. Biophys. Acta 634, 70–84).  相似文献   

5.
A model is developed for the excitation-contraction coupling of mammalian cardiac muscle. This model assumes that upon depolarization, the calcium current not only raises the sarcoplasmic Ca2+ concentration, but also induces the release of Ca from cisternal sarcoplasmic reticulum, whose rate of release depends on the membrane potential. These two main sources of calcium elevate the sarcoplasmic Ca2+ concentration so that it activates the interaction of myosin and actin and initiates contraction in accordance with Huxley's sliding filament mechanism. The uptake and recycling of Ca2+ to cisternal sarcoplasmic reticulum is accomplished by the longitudinal sarcoplasmic reticulum. Mitochondria are assumed to accumulate mainly Ca2+. The uptake of Ca is considered to be an active process, utilizing energy.The proposed model qualitatively predicts the following electrical-mechanical events often observed in living muscle: tension-voltage-duration, staircase phenomenon, frequency-strength relationship, post-extrasystolic potentiation and contractile behavior after a period of rest.  相似文献   

6.
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation–contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation–contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation–contraction coupling.  相似文献   

7.
A fluorescent chelate probe and a Millipore filtration technique have been used to study the effects of β-bungarotoxin (β-toxin) on passive and active Ca++ uptake and ATPase in fragmented sarcoplasmic reticulum (SR) of rabbit skeletal muscle. β-Toxin at 3 × 10?6 M did not affect ATPase activity. In the absence of ATP, β-Toxin increased the passive uptake of Ca++; in the presence of ATP, active Ca++ uptake was inhibited. The effect of β-toxin in SR can be detected at concentrations as low as 10?9 M. The results suggest that β-toxin induces Ca++ leakage in SR membranes.  相似文献   

8.
Cytosol from rabbit heart and slow and fast skeletal muscles was fractionated using (NH4)2SO4 to yield three cytosolic protein fractions, viz., CPF-I (protein precipitated at 30% saturation), CPF-II (protein precipitated between 30 and 60% saturation), and cytosol supernatant (protein soluble at 60% saturation). The protein fractions were dialysed and tested for their effects on ATP-dependent, oxalate-supported Ca2+ uptake by sarcoplasmic reticulum from heart and slow and fast skeletal muscles. CPF-I from heart and slow muscle, but not from fast muscle, caused marked inhibition (up to 95%) of Ca2+ uptake by sarcoplasmic reticulum from heart and from slow and fast muscles. Neither unfractionated cytosol nor CPF-II or cytosol supernatant from any of the muscles altered the Ca2+ uptake activity of sarcoplasmic reticulum. Studies on the characteristics of inhibition of sarcoplasmic reticulum Ca2+ uptake by CPF-I (from heart and slow muscle) revealed the following: (a) Inhibition was concentration- and temperature-dependent (50% inhibition with approx. 80 to 100 μg CPF-I; seen only at temperatures above 20°C). (b) The inhibitor reduced the velocity of Ca2+ uptake without appreciably influencing the apparent affinity of the transport system for Ca2+. (c) Inhibition was uncompetitive with respect to ATP. (d) Sarcoplasmic reticulum washed following exposure to CPF-I showed reduced rates of Ca2+ uptake, indicating that inhibition results from an interaction of the inhibitor with the sarcoplasmic reticulum membrane. (e) Concomitant with the inhibition of Ca2+ uptake, CPF-I also inhibited the Ca2+-ATPase activity of sarcoplasmic reticulum. (f) Heat-treatment of CPF-I led to loss of inhibitor activity, whereas exposure to trypsin appeared to enhance its inhibitory effect. (g) Addition of CPF-I to Ca2+-preloaded sarcoplasmic reticulum vesicles did not promote Ca2+ release from the vesicles. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum Ca2+ pump in heart and slow skeletal muscle but not in fast skeletal muscle. The characteristics of the inhibitor and its apparently selective distribution suggest a potentially important role for it in the in vivo regulation of sarcoplasmic reticulum Ca2+ pump, and therefore in determining the duration of Ca2+ signal in slow-contracting muscle fibers.  相似文献   

9.
The inhibitor of store-operated Ca2+ entry (SOCE) BTP2 was reported to inhibit ryanodine receptor Ca2+ leak and electrically evoked Ca2+ release from the sarcoplasmic reticulum when introduced into mechanically skinned muscle fibers. However, it is unclear how effects of intracellular application of a highly lipophilic drug like BTP2 on Ca2+ release during excitation–contraction (EC) coupling compare with extracellular exposure in intact muscle fibers. Here, we address this question by quantifying the effect of short- and long-term exposure to 10 and 20 µM BTP2 on the magnitude and kinetics of electrically evoked Ca2+ release in intact mouse flexor digitorum brevis muscle fibers. Our results demonstrate that neither the magnitude nor the kinetics of electrically evoked Ca2+ release evoked during repetitive electrical stimulation were altered by brief exposure (2 min) to either BTP2 concentration. However, BTP2 did reduce the magnitude of electrically evoked Ca2+ release in intact fibers when applied extracellularly for a prolonged period of time (30 min at 10 µM or 10 min at 20 µM), consistent with slow diffusion of the lipophilic drug across the plasma membrane. Together, these results indicate that the time course and impact of BTP2 on Ca2+ release during EC coupling in skeletal muscle depends strongly on whether the drug is applied intracellularly or extracellularly. Further, these results demonstrate that electrically evoked Ca2+ release in intact muscle fibers is unaltered by extracellular application of 10 µM BTP2 for <25 min, validating this use to assess the role of SOCE in the absence of an effect on EC coupling.  相似文献   

10.
《Life sciences》1996,58(8):PL123-PL129
Ryanodine has been shown to selectively inhibit the initial phase of contraction of rat vas deferens smooth muscle stimulated by endogenous release of norepinephrine (NE) (1), and part of this effect could be pre-junctional. To assess this, its effect on NE overflow was measured in the same preparation. NE overflow from electrical field-stimulated isolated rat vas deferens was quantified by electrochemical detection using HPLC. In order to limit pre-junctional autoregulatory mechanisms, α2-adrenergic receptors were blocked and P2x purinergic receptors were desensitized. In these experimental conditions, NE overflow was directly proportional to extracellular Ca2+ concentration. Ryanodine only induced a modest decrease in NE overflow. Cyclopiazonic acid (CPA), an inhibitor of sarcoplasmic reticulum Ca2+-ATPase, slightly increased NE overflow but decreased smooth muscle contraction induced by electrical field stimulation. It is concluded that part of the effect of ryanodine on field stimulation-induced contraction may be due to an inhibition of NE release, although the major inhibitory effect of this alkaloid is post- junctional. For CPA, its inhibitory effect on field stimulation-induced contraction is entirely post-junctional. Its effect on NE overflow suggests that, in this preparation, internal Ca2+ stores could function to accelerate termination of neurotransmitter release by sequestering cytosolic Ca2+.  相似文献   

11.
Phosphatidate releases calcium from cardiac sarcoplasmic reticulum   总被引:3,自引:0,他引:3  
Phosphatidate (PA) inhibits calcium accumulation by cardiac sarcoplasmic reticulum (SR) and enhances its Ca++ ATPase activity. These effects seem to be related to a phosphatidate-induced increase in the calcium permeability of the SR membrane with resultant calcium release. The amount of calcium released by phosphatidate is dependent both on the calcium concentration outside the SR vesicles and the internal calcium concentration. The ionophoric effects of phosphatidate on the sarcoplasmic membrane provide a novel pathway for controlling Ca++ transport in the cardiac cell.  相似文献   

12.
A study of the intracellular transport of calcium in rat heart   总被引:4,自引:0,他引:4  
The distribution of in vivo injected 45Ca++ in the subcellular fractions of rat heart has been studied. Most of the radioactivity of the cell was found to be associated with the subcellular organelles; only a small fraction was recovered in the soluble phase. Mitochondria contained the greatest part of the total radioactivity associated with the subcellular organelles. After injection of 45Ca++ the specific activity of the mitochondrial calcium pool was several times higher than that of the calcium of the sarcoplasmic reticulum. Pentachlorophenol has been administered to rats to uncouple oxidative phosphorylation in heart mitochondria in vivo and its effect on the distribution of 45Ca++ in the heart studied. Under these conditions, it has been found that mitochondria contained much less 45Ca++ than the controls; this decrease was paralleled by an increase of the radioactivity associated with the microsomes and with the final supernatant. Experiments in which 45Ca++ was added to heart homogenates at 0° indicated that 45Ca++ also became bound to mitochondria and the other subcellular structures at 0°. However, PCP had no effect on the distribution of radioactivity among the subcellular fractions under these conditions. The results suggest that (1) energy-linked movements of Ca++ take place in mitochondria of the intact rat heart, (2) a part of the uptake of 45Ca++ by mitochondria does not depend on metabolism, and, (3) the movements of Ca++ in heart mitochondria in vivo are probably more active than those in the sarcoplasmic reticulum.  相似文献   

13.
Studies on the Active Transport of Calcium in Human Red Cells   总被引:7,自引:3,他引:4  
The Ca++ transport mechanism in the red cell membrane was studied in resealed ghost cells. It was found that the red cell membrane can transport Ca++ from inside the cell into the medium against great concentration gradient ratios. Tracing the movement of 45Ca infused inside red cells indicated that over 95% of all Ca++ in the cells was transported into media in 20 min incubation under the optimum experimental conditions. The influence of temperature on the rate constant of transport indicated an activation energy of 13,500 cal per mole. The optimum pH range of media for the transport was between 7.5 and 8.5. As energy sources, ATP1, CTP, and UTP were about equally effective, GTP somewhat less effective, and ITP least effective among the nucleotides tested. The Ca++ transport does not appear to involve exchange of Ca++ with any monovalent or divalent cations. Also, it is not influenced by oligomycin, sodium azide, or ouabain in high concentrations, which inhibit the Ca++ transport in mitochondria or in sarcoplasmic reticulum. In these respects, the Ca++ transport mechanism in the red cell membrane is different from those of mitochondria and the sarcoplasmic reticulum.  相似文献   

14.
Calcium efflux from skeletal muscle fragmented sarcoplasmic reticulum was studied using a dilution technique and Millipore filtration. In the absence of Mg++ and external Ca++, addition of lmM adenosine triphosphate to the suspension resulted in an immediate loss of 26–55% of total vesicular calcium. The amount of calcium released was calculated to be sufficient to effect muscle contraction. After separation of the sarcoplasmic reticulum into light, intermediate and heavy vesicles, the light and heavy fractions were found to be only weakly responsive to adenosine triphosphate, whereas the intermediate fraction lost nearly half of its calcium. The significance of these results with respect to excitation-contraction coupling in muscle is discussed.  相似文献   

15.
The control of calcium concentration in the cytoplasm of most cells involves both the influx and efflux of Ca++ from extracellular fluid and the release and uptake of Ca++ from two separate, but interacting intracellular membrane-bound Ca++ stores: (1) the ryanodine receptor-activated calcium store (RyR) and (2) the inositol-trisphosphate (IP3) receptor calcium store (Golovina and Blaustein, 1997, Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 1643–1648). A more complete understanding of calcium pathways may lead to the development of new strategies to reduce the pathophysiology induced by severe hyperthermia, exercise, hypoxia, and other stresses. This review discusses the fundamental mechanisms involved in the control of Cai, the main regulator of biochemical processes, and ultimately, of physiological responses to moderate and severe physical exercise and stress.  相似文献   

16.
The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca2+ release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca2+ release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca2+ signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca2+ release, with no significant change in SR Ca2+ content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1), indicating that the reduced Ca2+ release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca2+ release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.  相似文献   

17.
Huntington’s disease (HD) is caused by an expanded CAG trinucleotide repeat within the gene encoding the protein huntingtin. The resulting elongated glutamine (poly-Q) sequence of mutant huntingtin (mhtt) affects both central neurons and skeletal muscle. Recent reports suggest that ryanodine receptor–based Ca2+ signaling, which is crucial for skeletal muscle excitation–contraction coupling (ECC), is changed by mhtt in HD neurons. Consequently, we searched for alterations of ECC in muscle fibers of the R6/2 mouse, a mouse model of HD. We performed fluorometric recordings of action potentials (APs) and cellular Ca2+ transients on intact isolated toe muscle fibers (musculi interossei), and measured L-type Ca2+ inward currents on internally dialyzed fibers under voltage-clamp conditions. Both APs and AP-triggered Ca2+ transients showed slower kinetics in R6/2 fibers than in fibers from wild-type mice. Ca2+ removal from the myoplasm and Ca2+ release flux from the sarcoplasmic reticulum were characterized using a Ca2+ binding and transport model, which indicated a significant reduction in slow Ca2+ removal activity and Ca2+ release flux both after APs and under voltage-clamp conditions. In addition, the voltage-clamp experiments showed a highly significant decrease in L-type Ca2+ channel conductance. These results indicate profound changes of Ca2+ turnover in skeletal muscle of R6/2 mice and suggest that these changes may be associated with muscle pathology in HD.  相似文献   

18.
The association between the cardiac transmembrane proteins phospholamban and sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) regulates the active transport of Ca2+ into the sarcoplasmic reticulum (SR) lumen and controls the contraction and relaxation of the heart. Heart failure (HF) and cardiac hypertrophy have been linked to defects in Ca2+ uptake by the cardiac SR and stimulation of calcium transport by modulation of the PLB-SERCA interaction is a potential therapy. This work is part of an effort to identify compounds that destabilise the PLB-SERCA interaction in well-defined membrane environments. It is shown that heparin-derived oligosaccharides (HDOs) interact with the cytoplasmic domain of PLB and consequently stimulate SERCA activity. These results indicate that the cytoplasmic domain of PLB is functionally important and could be a valid target for compounds with drug-like properties.  相似文献   

19.
We offer a new hypothesis to explain calcium flows in skeletal muscle cells. Our model accounts for the uptake of Ca2+ from the extracellular fluid, and the release of Ca2+ from the sarcoplasmic reticulum (SR/ER) (the endoplasmic reticulum in muscle is named sarcoplasmic reticulum); this has engendered difficulty in reviews encompassing both muscle and nonmuscle cells. Here we will typically refer to the organelle as ER, except when specifically discussing muscle cells. The broad consideration of two major, still unexplained properties of skeletal muscle function, namely excitation contraction coupling and capacitative calcium entry are accounted for in a unitary hypothesis. This model allows a reinterpretation of existing data, and points to areas where new investigation may be fruitful. While primarily aimed at explaining Ca2+ flows in skeletal muscle, we consider findings of other systems to explore the implications of this hypothesis for other cell types.  相似文献   

20.
K.S. Cheah  Anne M. Cheah 《BBA》1981,638(1):40-49
Comparative studies were carried out on the Ca2+-transport systems of mitochondria and sarcoplasmic reticulum from longissimus dorsi muscle of genetically selected malignant hyperthermia-prone and normal pigs in order to identify the biochemical lesion responsible for the enhanced release of Ca2+ in the sarcoplasm occurring in porcine malignant hyperthermia. Mitochondria isolated from longissimus dorsi muscle of malignant hyperthermia-prone pigs contained a significantly (P < 0.001) higher amount of endogenous long-chain fatty acids. Similar amounts of endogenous mitochondrial phospholipase A2 were observed in both types of pigs, but the total activity in malignant hyperthermia-prone pigs was at least twice that of normal. Spermine, a phospholipase A2 inhibitor, lowered the activity in both types of mitochondria to a similar final level. Mitochondria of malignant hyperthermia-prone pigs showed a significantly (P < 0.001) higher oligomycin-insensitive (Ca2+ + Mg2+)-ATPase activity, but the Mg2+-ATPase and the (Ca2+ + Mg2+)-ATPase activities were similar in both types of pigs. Sarcoplasmic reticulum isolated from longissimus dorsi muscle of malignant hyperthermia-prone pigs showed a significantly higher (Ca2+ + Mg2+)-ATPase activity and a lower rate of Ca2+ uptake; the maximal amount and the rate of Ca2+ uptake by sarcoplasmic reticulum of malignant hyperthermia-prone pigs were half that of normal. Mitochondria from longissimus dorsi muscle of malignant hyperthermia-prone pigs inhibited the Ca2+-transport system of the sarcoplasmic reticulum of longissimus dorsi from both normal and malignant hyperthermia-prone pigs, but mitochondria from normal pigs had no influence on the sarcoplasmic reticulum from either type. Experimental evidence favours the concept that long-chain fatty acids released from skeletal muscle mitochondria by endogenous mitochondrial phospholipase A2 are responsible for the enhanced release of Ca2+ from mitochondria (Cheah, K.S. and Cheah, A.M. (1981) Biochim. Biophys. Acta 634, 70–84), and also additional release of Ca2+ from sarcoplasmic reticulum into the sarcoplasm during porcine malignant hyperthermia syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号