首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenoviruses (Ads) utilize host cell microtubules to traverse the intracellular space and reach the nucleus in a highly efficient manner. Previous studies have shown that Ad infection promotes the formation of stable, posttranslationally modified microtubules by a RhoA-dependent mechanism. Ad infection also shifts key parameters of microtubule dynamic instability by a Rac1-dependent mechanism, resulting in microtubules with lower catastrophe frequencies, persistent growth phases, and a bias toward net growth compared to microtubules in uninfected cells. Until now it was unclear whether changes in RhoGTPase activity or microtubule dynamics had a direct impact on the efficiency of Ad microtubule-dependent nuclear localization. Here we have performed synchronous Ad infections and utilized confocal microscopy to analyze the individual contributions of RhoA activation, Rac1 activation, microtubule stability, dynamic behavior, and posttranslational modifications on Ad nuclear localization efficiency (NLE). We found that drug-induced suppression of microtubule dynamics impaired Ad NLE by disrupting the radial organization of the microtubule array. When the microtubule array was maintained, the suppression or enhancement of microtubule turnover did not significantly affect Ad NLE. Furthermore, RhoA activation or the formation of acetylated microtubules did not enhance Ad NLE. In contrast, active Rac1 was required for efficient Ad nuclear localization. Because Rac1 mediates persistent growth of microtubules to the lamellar regions of cells, we propose that Ad-induced activation of Rac1 enhances the ability of microtubules to "search and capture" incoming virus particles.  相似文献   

2.
To get insight into the action of Rho GTPases on the microtubule system we investigated the effects of Cdc42, Rac1, and RhoA on the dynamics of microtubules in Swiss 3T3 fibroblasts. In control cells microtubule ends were dynamic: plus ends frequently switched between growth, shortening and pauses; the growth phase predominated over shortening. Free minus ends of microtubules depolymerized rapidly and never grew. Free microtubules were short-lived, and the microtubule network was organized into a radial array. In serum-starved cells microtubule ends became more stable: although plus ends still transited between growth and shortening, polymerization and depolymerization excursions became shorter and balanced each other. Microtubule minus ends were also stabilized. Consequently lifespan of free microtubules increased and microtubule array changed its radial pattern into a random one. Activation of Cdc42 and Rac1 in serum-starved cells promoted dynamic behavior of microtubule plus and minus ends, while inhibition of these GTPases in serum-grown cells suppressed microtubule dynamics and mimicked all effects of serum starvation. Activation of RhoA in serum-grown cells had effects similar to Cdc42 /Rac1 inactivation: it suppressed the dynamics of plus and minus ends, reduced the length of growth and shrinking episodes, and disrupted the radial organization of microtubules. However, in contrast to Cdc42 and Rac1 inactivation, active RhoA had no effect on the balance between microtubule growth and shortening. We conclude that Cdc42 and Rac1 have similar stimulating effects on microtubule dynamics while RhoA acts in an opposite way.  相似文献   

3.
The migration of tissue cells requires interplay between the microtubule and actin cytoskeletal systems. Recent reports suggest that interactions of microtubules with actin dynamics creates a polarization of microtubule assembly behavior in cells, such that microtubule growth occurs at the leading edge and microtubule shortening occurs at the cell body and rear. Microtubule growth and shortening may activate Rac1 and RhoA signaling, respectively, to control actin dynamics. Thus, an actin-dependent gradient in microtubule dynamic-instability parameters in cells may feed back through the activation of specific signalling pathways to perpetuate the polarized actin-assembly dynamics required for cell motility.  相似文献   

4.
Microtubules play an important role in the transport of viral pathogens during the establishment of their infection cycles. The microtubule cytoskeleton also facilitates efficient release of newly assembled progeny at later stages of infection. However, the precise effects of viral infection on microtubule dynamics are not understood. Using live-cell imaging, we show that vaccinia virus stimulates increases in peripheral microtubule dynamics at 8 hr postinfection. Infection also increases the frequency with which microtubule tips reach the cell cortex and reduces the acetylation of peripheral microtubules consistent with their increased dynamics. These virus-induced changes in peripheral microtubule dynamics are independent of the GTPases Rac and Cdc42, which are known stimulators of microtubule dynamics in uninfected cells. They do, however, require F11L-mediated inhibition of signaling via the GTPase RhoA and its effector, mDia. We suggest that increases in peripheral microtubule dynamics and cortical targeting contribute to enhanced virus release.  相似文献   

5.
We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells.  相似文献   

6.
Microtubules are involved in actin-based protrusion at the leading-edge lamellipodia of migrating fibroblasts. Here we show that the growth of microtubules induced in fibroblasts by removal of the microtubule destabilizer nocodazole activates Rac1 GTPase, leading to the polymerization of actin in lamellipodial protrusions. Lamellipodial protrusions are also activated by the rapid growth of a disorganized array of very short microtubules induced by the microtubule-stabilizing drug taxol. Thus, neither microtubule shortening nor long-range microtubule-based intracellular transport is required for activating protrusion. We suggest that the growth phase of microtubule dynamic instability at leading-edge lamellipodia locally activates Rac1 to drive actin polymerization and lamellipodial protrusion required for cell migration.  相似文献   

7.
Microtubules undergo alternating periods of growth and shortening, known as dynamic instability. These dynamics allow microtubule plus ends to explore cellular space. The "search and capture" model posits that selective anchoring of microtubule plus ends at the cell cortex may contribute to cell polarization, spindle orientation, or targeted trafficking to specific cellular domains. Whereas cytoplasmic dynein is primarily known as a minus-end-directed microtubule motor for organelle transport, cortically localized dynein has been shown to capture and tether microtubules at the cell periphery in both dividing and interphase cells. To explore the mechanism involved, we developed a minimal in vitro system, with dynein-bound beads positioned near microtubule plus ends using an optical trap. Dynein induced a significant reduction in the lateral diffusion of microtubule ends, distinct from the effects of other microtubule-associated proteins such as kinesin-1 and EB1. In assays with dynamic microtubules, dynein delayed barrier-induced catastrophe of microtubules. This effect was ATP dependent, indicating that dynein motor activity was required. Computational modeling suggests that dynein delays catastrophe by exerting tension on individual protofilaments, leading to microtubule stabilization. Thus, dynein-mediated capture and tethering of microtubules at the cortex can lead to enhanced stability of dynamic plus ends.  相似文献   

8.
Toxoplasma gondii infection triggers host microtubule rearrangement and organelle recruitment around the parasite vacuole. Factors affecting initial stages of microtubule remodeling are unknown. To illuminate the mechanism, we tested the hypothesis that the parasite actively remodels host microtubules. Utilizing heat-killed parasites and time-lapse analysis, we determined microtubule rearrangement requires living parasites and is time dependent. We discovered a novel aster of microtubules (MTs) associates with the vacuole within 1h of infection. This aster lacks the concentrated foci of gamma (gamma)-tubulin normally associated with MT nucleation sites. Unexpectedly, vacuole enlargement does not correlate with an increase in MT staining around the vacuole. We conclude microtubule remodeling does not result from steric constraints. Using nocodazole washout studies, we demonstrate the vacuole nucleates host microtubule growth in-vivo via gamma-tubulin-associated sites. Moreover, superinfected host cells display multiple gamma-tubulin foci. Microtubule dynamics are critical for cell cycle control in uninfected cells. Using non-confluent monolayers, we show host cells commonly fail to finish cytokinesis resulting in larger, multinucleated cells. Our data suggest intimate interactions between T. gondii and host microtubules result in suppression of cell division and/or cause a mitotic defect, thus providing a larger space for parasite duplication.  相似文献   

9.
Shut-off of actin biosynthesis in adenovirus serotype-2-infected cells   总被引:8,自引:0,他引:8  
Adenovirus produces a dramatic shut-off of host protein synthesis after infection of HeLa cells. The level of actin messenger RNAs remained relatively unchanged after viral infection, when assayed by in vitro translation and two-dimensional gel electrophoresis analysis of the proteins or hybridization of the total cytoplasmic RNAs to the human actin gene. The distribution of actin mRNA in the polyribosomes is altered after adenovirus infection, with small polyribosomes and monoribosomes of the infected cells occupied by actin messages untranslatable in a rabbit reticulocyte lysate. The large polyribosomes still retain enough functional mRNAs to provide significant levels of actin protein in a rabbit reticulocyte in vitro translation system. In contrast, in homologous infected cell lysates, the translation of exogenous actin mRNA is greatly reduced when compared to uninfected HeLa cell lysates. In nuclease-treated uninfected or infected HeLa cell-free extracts, translation of viral mRNA is equally efficient and higher than that of actin mRNA. Thus, translational regulatory mechanisms which include inactivation of a part of the actin mRNA population accompanied by displacement to small polysomes and/or virus-induced modification of the cellular translational machinery to discriminate against cellular actin mRNA seem to account for the sharp reduction in actin protein synthesis of adenovirus-infected cells.  相似文献   

10.
Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics.  相似文献   

11.
Recent experiments have demonstrated that the behavior of the interphase microtubule array is cell-type specific: microtubules in epithelial cells are less dynamic than microtubules in fibroblasts (Pepper-kok et al., 1990; Wadsworth and McGrail, 1990). To determine which parameters of microtubule dynamic instability behavior are responsible for this difference, we have examined the behavior of individual microtubules in both cell types after injection with rhodamine-labeled tubulin subunits. Individual microtubules in both cell types were observed to grow, shorten, and pause, as expected. The average amount of time microtubules remained within the lamellae of CHO fibroblasts, measured from images acquired at 10-s intervals, was significantly shorter than the average amount of time microtubules remained within lamellae of PtK1 epithelial cells. Further analysis of individual microtubule behavior from images acquired at 2-s intervals reveals that microtubules in PtK1 cells undergo multiple brief episodes of growth and shortening, resulting in little overall change in the microtubule network. In contrast, microtubules in lamellae of CHO fibroblasts are observed to undergo fewer transitions which are of longer average duration, resulting in substantial changes in the microtubule network over time. A small subset of more stable microtubules was also detected in CHO fibroblasts. Quantification of the various parameters of dynamic instability behavior from these sequences demonstrates that the average rates of both growth and shortening are significantly greater for the majority of microtubules in fibroblasts than for microtubules in epithelial cells (19.8 +/- 10.8 microns/min, 32.2 +/- 17.7 microns/min, 11.9 +/- 6.5 microns/min, and 19.7 +/- 8.1 microns/min, respectively). The frequency of catastrophe events (1/interval between catastrophe events) was similar in both cell types, but the frequency of rescue events (1/time spent shrinking) was significantly higher in PtK1 cells. Thus, individual microtubules in PtK1 lamellae undergo frequent excursions of short duration and extent, whereas most microtubules in CHO lamellae undergo more extensive excursions often resulting in the appearance or disappearance of microtubules within the field of view. These observations provide the first direct demonstration of cell-type specific behavior of individual microtubules in living cells, and indicate that these differences can be brought about by modulation of the frequency of rescue. These results directly support the view that microtubule dynamic instability behavior is regulated in a cell-type specific manner.  相似文献   

12.
《The Journal of cell biology》1988,107(6):2223-2231
Individual microtubule dynamics were observed in real time in primary cultures of newt lung epithelium using video-enhanced differential interference contrast microscopy and digital image processing. The linear filaments observed in cells corresponded to microtubules based on three criteria: (a) small particles translocated along them; (b) the majority of them disappeared after incubation in nocodazole; (c) and the distribution observed by differential interference contrast correlated with anti-tubulin immunofluorescence staining of the same cell. Microtubules were most clearly observed at the leading edge of cells located at the periphery of the epithelial sheet. Microtubules exhibited dynamic instability behavior: individual microtubules existed in persistent phases of elongation or rapid shortening. Microtubules elongated at a velocity of 7.2 micron/min +/- 0.3 SEM (n = 42) and rapidly shortened at a velocity of 17.3 micron/min +/- 0.7 SEM (n = 35). The transitions between elongation and rapid shortening occurred abruptly and stochastically with a transition frequency of 0.014 s-1 for catastrophe and 0.044 s-1 for rescue. Approximately 70% of the rapidly shortening microtubules were rescued and resumed elongation within the 35 x 35 micron microscopic field. A portion of the microtubule population appeared differentially stable and did not display any measurable elongation or shortening during 10-15-min observations.  相似文献   

13.
LLCPK-1 cells were transfected with a green fluorescent protein (GFP)-alpha tubulin construct and a cell line permanently expressing GFP-alpha tubulin was established (LLCPK-1alpha). The mitotic index and doubling time for LLCPK-1alpha were not significantly different from parental cells. Quantitative immunoblotting showed that 17% of the tubulin in LLCPK-1alpha cells was GFP-tubulin; the level of unlabeled tubulin was reduced to 82% of that in parental cells. The parameters of microtubule dynamic instability were compared for interphase LLCPK-1alpha and parental cells injected with rhodamine-labeled tubulin. Dynamic instability was very similar in the two cases, demonstrating that LLCPK-1alpha cells are a useful tool for analysis of microtubule dynamics throughout the cell cycle. Comparison of astral microtubule behavior in mitosis with microtubule behavior in interphase demonstrated that the frequency of catastrophe increased twofold and that the frequency of rescue decreased nearly fourfold in mitotic compared with interphase cells. The percentage of time that microtubules spent in an attenuated state, or pause, was also dramatically reduced, from 73.5% in interphase to 11.4% in mitosis. The rates of microtubule elongation and rapid shortening were not changed; overall dynamicity increased 3.6-fold in mitosis. Microtubule release from the centrosome and a subset of differentially stable astral microtubules were also observed. The results provide the first quantitative measurements of mitotic microtubule dynamics in mammalian cells.  相似文献   

14.
Human herpesvirus 8 (HHV-8; also called Kaposi's sarcoma-associated herpesvirus), which is implicated in the pathogenesis of Kaposi's sarcoma (KS) and lymphoproliferative disorders, infects a variety of target cells both in vivo and in vitro. HHV-8 binds to several in vitro target cells via cell surface heparan sulfate and utilizes the alpha3beta1 integrin as one of its entry receptors. Interactions with cell surface molecules induce the activation of host cell signaling cascades and cytoskeletal changes (P. P. Naranatt, S. M. Akula, C. A. Zien, H. H. Krishnan, and B. Chandran, J. Virol. 77:1524-1539, 2003). However, the mechanism by which the HHV-8-induced signaling pathway facilitates the complex events associated with the internalization and nuclear trafficking of internalized viral DNA is as yet undefined. Here we examined the role of HHV-8-induced cytoskeletal dynamics in the infectious process and their interlinkage with signaling pathways. The depolymerization of microtubules did not affect HHV-8 binding and internalization, but it inhibited the nuclear delivery of viral DNA and infection. In contrast, the depolymerization of actin microfilaments did not have any effect on virus binding, entry, nuclear delivery, or infection. Early during infection, HHV-8 induced the acetylation of microtubules and the activation of the RhoA and Rac1 GTPases. The inactivation of Rho GTPases by Clostridium difficile toxin B significantly reduced microtubular acetylation and the delivery of viral DNA to the nucleus. In contrast, the activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor significantly augmented the nuclear delivery of viral DNA. Among the Rho GTPase-induced downstream effector molecules known to stabilize the microtubules, the activation of RhoA-GTP-dependent diaphanous 2 was observed, with no significant activation in the Rac- and Cdc42-dependent PAK1/2 and stathmin molecules. The nuclear delivery of viral DNA increased in cells expressing a constitutively active RhoA mutant and decreased in cells expressing a dominant-negative mutant of RhoA. HHV-8 capsids colocalized with the microtubules, as observed by confocal microscopic examination, and the colocalization was abolished by the destabilization of microtubules with nocodazole and by the phosphatidylinositol 3-kinase inhibitor affecting the Rho GTPases. These results suggest that HHV-8 induces Rho GTPases, and in doing so, modulates microtubules and promotes the trafficking of viral capsids and the establishment of infection. This is the first demonstration of virus-induced host cell signaling pathways in the modulation of microtubule dynamics and in the trafficking of viral DNA to the infected cell nucleus. These results further support our hypothesis that HHV-8 manipulates the host cell signaling pathway to create an appropriate intracellular environment that is conducive to the establishment of a successful infection.  相似文献   

15.
Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.  相似文献   

16.
Transforming growth factor beta1 (TGF-beta1) signaling is compromised in many tumors, thereby allowing the tumor to escape the growth-inhibitory and proapoptotic activities of the cytokine. Human adenoviruses interfere with a number of cellular pathways involved in cell cycle regulation and apoptosis, initially placing the cell in a "tumor-like" state by forcing quiescent cells into the cell cycle and also inhibiting apoptosis. We report that adenovirus-infected cells resemble tumor cells in that TGF-beta1 signaling is inhibited. The levels of TGF-beta1 receptor II (TbetaRII) in adenovirus-infected cells were decreased, and this decrease was mapped, by using virus mutants, to the E1A gene and to amino acids 2 to 36 and the C-terminal binding protein binding site in the E1A protein. The decrease in the TbetaRII protein was accompanied by a decrease in TbetaRII mRNA. The decrease in TbetaRII protein levels in adenovirus-infected cells was greater than the decrease in TbetaRII mRNA, suggesting that downregulation of the TbetaRII protein may occur through more than one mechanism. Surprisingly in this context, the half-lives of the TbetaRII protein in infected and uninfected cells were similar. TGF-beta1 signaling was compromised in cells infected with wild-type adenovirus, as measured with 3TP-lux, a TGF-beta-sensitive reporter plasmid expressing luciferase. Adenovirus mutants deficient in TbetaRII downregulation did not inhibit TGF-beta1 signaling. TGF-beta1 pretreatment reduced the relative abundance of adenovirus structural proteins in infected cells, an effect that was potentiated when cells were infected with mutants incapable of modulating the TGF-beta signaling pathway. These results raise the possibility that inhibition of TGF-beta signaling by E1A is a means by which adenovirus counters the antiviral defenses of the host.  相似文献   

17.
SCG10 (superior cervical ganglia neural-specific 10 protein) is a neuron specific member of the stathmin family of microtubule regulatory proteins that like stathmin can bind to soluble tubulin and depolymerize microtubules. The direct actions of SCG10 on microtubules themselves and on their dynamics have not been investigated previously. Here, we analyzed the effects of SCG10 on the dynamic instability behavior of microtubules in vitro, both at steady state and early during microtubule polymerization. In contrast to stathmin, whose major action on dynamics is to destabilize microtubules by increasing the switching frequency from growth to shortening (the catastrophe frequency) at microtubule ends, SCG10 stabilized the plus ends both at steady state and early during polymerization by increasing the rate and extent of growth. For example, early during polymerization at high initial tubulin concentrations (20 microM), a low molar ratio of SCG10 to tubulin of 1:30 increased the growth rate by approximately 50%. In contrast to its effects at plus ends, SCG10 destabilized minus ends by increasing the shortening rate, the length shortened during shortening events, and the catastrophe frequency. Consistent with its ability to modulate microtubule dynamics at steady state, SCG10 bound to purified microtubules along their lengths. The dual activity of SCG10 at opposite microtubule ends may be important for its role in regulating growth cone microtubule dynamics. SCG10's ability to promote plus end growth may facilitate microtubule extension into filopodia, and its ability to destabilize minus ends could provide soluble tubulin for net plus end elongation.  相似文献   

18.
G proteins serve many functions involving the transfer of signals from cell surface receptors to intracellular effector molecules. Considerable evidence suggests that there is an interaction between G proteins and the cytoskeleton. In this report, G protein alpha subunits Gi1alpha, Gsalpha, and Goalpha are shown to activate the GTPase activity of tubulin, inhibit microtubule assembly, and accelerate microtubule dynamics. Gialpha inhibited polymerization of tubulin-GTP into microtubules by 80-90% in the absence of exogenous GTP. Addition of exogenous GTP, but not guanylylimidodiphosphate, which is resistant to hydrolysis, overcame the inhibition. Analysis of the dynamics of individual microtubules by video microscopy demonstrated that Gi1alpha increases the catastrophe frequency, the frequency of transition from growth to shortening. Thus, Galpha may play a role in modulating microtubule dynamic instability, providing a mechanism for the modification of the cytoskeleton by extracellular signals.  相似文献   

19.
The development of resistance to paclitaxel in tumors is one of the most significant obstacles to successful therapy. Overexpression of the betaIII-tubulin isotype has been associated with paclitaxel resistance in a number of cancer cell lines and in tumors, but the mechanism of resistance has remained unclear. Paclitaxel inhibits cancer cell proliferation by binding to the beta-subunit of tubulin in microtubules and suppressing microtubule dynamic instability, leading to mitotic arrest and cell death. We hypothesized that betaIII-tubulin overexpression induces resistance to paclitaxel either by constitutively enhancing microtubule dynamic instability in resistant cells or by rendering the microtubules less sensitive to the suppression of dynamics by paclitaxel. Using Chinese hamster ovary cells that inducibly overexpress either betaI- or betaIII-tubulin, we analyzed microtubule dynamic instability during interphase by microinjection of rhodamine-labeled tubulin and time-lapse fluorescence microscopy. In the absence of paclitaxel, there were no differences in any aspect of dynamic instability between the two beta-tubulin-overexpressing cell types. However, in the presence of 150 nm paclitaxel, dynamic instability was suppressed to a significantly lesser extent (suppressed only 12%) in cells overexpressing betaIII-tubulin than in cells overexpressing similar levels of betaI-tubulin (suppressed 47%). The results suggest that overexpression of betaIII-tubulin induces paclitaxel resistance by reducing the ability of paclitaxel to suppress microtubule dynamics. The results also suggest that endogenous regulators of microtubule dynamics may differentially interact with individual tubulin isotypes, supporting the idea that differential expression of tubulin isotypes has functional consequences in cells.  相似文献   

20.
Microtubules are hollow tubes essential for many cellular functions such as cell polarization and migration, intracellular trafficking and cell division. They are polarized polymers composed of α and β tubulin that are, in most cells, nucleated at the centrosome at the center of the cell. Microtubule plus-ends are oriented towards the periphery of the cell and explore the cytoplasm in a very dynamic manner. Microtubule alternate between phases of growth and shrinkage in a manner described as dynamic instability. Their dynamics is highly regulated by multiple factors: tubulin post-translational modifications such as detyrosination or acetylation, and microtubule-associated proteins, among them the plus-tip tracking proteins. This regulation is necessary for microtubule functions in the cell. In this review, we will focus on the role of microtubules in intracellular organization. After an overview of the mechanisms responsible for the regulation of microtubule dynamics, the major roles of microtubules dynamics in organelle positioning and organization in interphase cells will be discussed. Conversely, the role of certain organelles, like the nucleus and the Golgi apparatus as microtubule organizing centers will be reviewed. We will then consider the role of microtubules in the establishment and maintenance of cell polarity using few examples of cell polarization: epithelial cells, neurons and migrating cells. In these cells, the microtubule network is reorganized and undergoes specific and local regulation events; microtubules also participate in the intracellular reorganization of different organelles to ensure proper cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号