首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to explore the effect of dehydroepiandrosterone (DHEA) on the establishment, growth and reproduction of the metacestode stage of the tapeworm Taenia crassiceps, both in vivo and in vitro. Administration of DHEA prior to infection in mice of both sexes reduced the parasite load by 50% compared with untreated mice. This protective effect was not associated with the immune response, since there was no effect of DHEA treatment on mRNA levels of IL-2, IFN-γ, IL-4 or IL-10. DHEA treatment of infected mice increased androgen receptor expression in splenocytes of both sexes. Moreover, in vitro treatment of T. crassiceps with DHEA reduced reproduction, motility and viability in a dose- and time-dependent fashion. Results indicate that DHEA has strong negative direct modulatory effects on murine cysticercosis. We suggest the use of hormonal-analogues for protective purposes as a therapeutic approach to prevent murine cysticercosis.  相似文献   

2.
The aim of this work was to investigate the role of progesterone during Taenia crassiceps cysticercosis, and the immunological mechanisms involved in its effects, by relating progesterone treatment to whole parasite counts, to host humoral and cellular immune response, to the presence or absence of nuclear receptors to sex steroids in splenocytes, and to serum sex steroid levels in infected mice of both genders. Progesterone treatment increased parasite loads two-fold in females and three-fold in males compared with control mice. The expression of the Th2 cytokine profile (IL-4, IL-6 and IL-10) was markedly increased in infected mice of both genders, while progesterone treatment returned this expression to basal levels. However, the Th1 cytokine profile (IFN-gamma and TNF-alpha) was not affected by infection, whilst progesterone treatment increased the expression of both cytokines two-fold compared to uninfected, infected and placebo-treated mice. Testosterone serum levels decreased in infected male mice by 95%, and treatment with progesterone did not affect them. In females, no change in testosterone levels was observed. Progesterone levels increased three-fold only in progesterone-treated infected mice of both sexes, while estradiol levels in female and male progesterone-treated infected mice increased two-fold compared to infected control mice. The infection markedly induced the expression of progesterone receptor (PR) isoforms A and B in splenocytes of infected mice of both genders (five-fold). Metabolism of progesterone to estradiol was demonstrated by the use of the anti-estrogen tamoxifen, which reduced parasite loads 100% in infected mice of both sexes treated with progesterone. These results suggest that progesterone, possibly through its metabolism to estradiol, affects establishment, growth and reproduction of the helminth parasite T. crassiceps.  相似文献   

3.
This study investigates the effect of estradiol (E) on self-healing of Plasmodium chabaudi malaria in mice of the inbred strain C57BL/10. Our data show: (1) Female mice and male castrates are capable of self-healing infections when challenged with 10(6) P. chabaudi-infected erythrocytes. Self-healing is completely suppressed after pretreatment of mice with 12 micrograms E injected sc twice a week for 3 weeks. (2) The suppressive effect of E is prevented by the estrogen receptor blockers tamoxifen and clomiphene. (3) The nonsteroidal E-agonist diethylstilbestrol (DES) also suppresses self-healing. This suppressive DES effect is prevented by tamoxifen. (4) In mice immune to P. chabaudi, neither survival rate nor the course of parasitemia is affected by E, even at 10-fold higher E doses. Our data suggest that the immunosuppressive action of E is a specific genomic effect, i.e., E-induced gene products prevent the development of protective immunity against P. chabaudi.  相似文献   

4.
The effect of the sex of the intermediate host on the growth and development of the metacestodes of Taenia crassiceps has been investigated. Three different strains of mice were used, the C R S, L A C A and C F L P strains and two strains of metacestode, the Toi and the E R S strains. The results show that matacestodes of T. crassiceps grow and multiply more rapidly in female than in male mice, although both sexes are equally susceptible to the infection. The origin of the parasite, i.e., from a rat or mouse host, affects the parasite growth.  相似文献   

5.
BALB/c mice can be protected against a fatal Leishmania major infection by immunization with whole radio-attenuated promastigotes; however, neither the antigens responsible for protection nor the protective immunologic mechanisms have been defined. In this study, the ability of promastigote fractions to elicit similar immunity to that obtained with whole organisms, and the immune responses associated with such protection were analyzed. Intraperitoneal immunization with a soluble, membrane-free parasite extract was found to induce protection against L. major challenge equal to that obtained with whole organisms. Induction of immunity (89% protection in seven experiments) was most effective with 100 micrograms of the soluble leishmanial antigen (SLA) and required concomitant injection of the bacterial adjuvant, Corynebacterium parvum (CP), followed by an i.p. boost of SLA alone 1 wk later. Vaccinated animals exhibited Leishmania-specific cell-mediated immunity, as assessed both by lymphocyte transformation and the production of macrophage-activating factors (MAF). In addition, although SLA + CP-immunized mice failed to exhibit delayed-type hypersensitivity (DTH) before challenge, splenic lymphocytes from these mice could transfer a local DTH reaction to naive recipients. Immunization also induced the production of antibodies against two major metabolically labeled proteins of m.w. 30,000 and 53,000, but failed to stimulate a detectable humoral response against promastigote surface antigens. Thus, these experiments demonstrate that vaccine-induced immunity against cutaneous leishmaniasis is strongly associated with the induction of cell-mediated immunity, but does not require the development of an antibody response to promastigote surface antigens. In addition, these studies establish the feasibility of employing soluble, nonmembrane-derived parasite material as a source of protective immunogens.  相似文献   

6.
Our results show that exosomes secreted by SRDC pulsed in vitro with Toxoplasma gondii-derived antigens (Exo-TAg) induced protective responses against infection with the parasite in both syngeneic and allogeneic mice. After oral infection, syngeneic CBA/J mice exhibited significantly fewer cysts in their brains and allogeneic C57BL/6 mice survived. This protection was associated with strong humoral responses in vivo in serum from both CBA/J and C57BL/6 mice, and with high levels of anti-TAg IgA antibodies in intestinal secretions from CBA/J mice alone. Furthermore, strong cellular responses in vivo were observed in both mouse models. Cellular proliferation was associated with cytokines production by spleen and mesenteric lymph node cells. The results presented here show that exosomes are nucleic acid free vesicles that are able to induce immune responses correlated with protection against parasitic infections in both syngeneic and allogeneic mice. They could constitute an efficient tool for use in vaccination and antitumor strategies based on exosomes.  相似文献   

7.
To develop an effective vaccine against the intracellular protozoan parasite Leishmania spp., we investigated the feasibility of expression library immunization (ELI) in the mouse. Genomic expression libraries of L. major were constructed and used to immunize mice. One of the three libraries (L1, with 10(5) clones) induced a significant protective immune response and delayed the onset of lesion development in highly susceptible BALB/c mice after i.m. immunization, compared with control mice immunized with the empty vector (EV). L1 was then divided into five sublibraries of approximately 2 x 10(4) clones each. Mice immunized with one of the sublibraries (SL1A) developed an even stronger protective effect than that induced by L1. SL1A was further divided into 20 sublibraries (SL2) of approximately 10(3) clones each. One of the SL2 libraries (SL2G) induced a strong protective effect against L. major infection. In direct comparative studies, the protective effect of the sublibraries was in the order of SL2G > SL1A > L1. Lymphoid cells from mice vaccinated with SL2G produced more IFN-gamma and NO, compared with cells from control mice injected with EV. Serum from the vaccinated mice also contained more parasite-specific IgG2a Ab, compared with controls. Therefore, these data demonstrate that ELI is feasible against this complex intracellular parasitic infection, by preferentially inducing the development of Th1 responses. Furthermore, by sequential division of the libraries, this approach may be used to enrich and identify protective genes for effective gene vaccination against other parasitic infections.  相似文献   

8.
Cysticercotic male mice undergo an impressive feminisation process, characterised by 200 times increased serum 17beta-estradiol levels while testosterone and dihydrotestosterone are 90% reduced, which results in elevated parasite burden. Administration of Fadrozole (an aromatase inhibitor) in male and female mice suppressed the production of 17beta-estradiol, accompanied with a 70% reduction in parasite burden. This protective effect was associated in male mice with a recovery of the specific cellular immune response. Interleukin-6 (IL-6) serum levels, and its production by splenocytes, was augmented by 80%, together with a 10-fold increase in its expression in testes of infected male mice. Fadrozole treatment returned these levels to baseline values. Aromatase expression in the testes of infected male mice was not affected by Fadrozole. These results suggest that aromatase and IL-6 are key molecules in the production of the feminisation undergone by infected male mice and to Fadrozole treatment as a possible new therapeutic approach to cysticercosis.  相似文献   

9.
Conditioning treatment of Vicia faba root tip meristem cells with NiCl2 prior to challenge treatment with triethylenemelamine (TEM) or maleic hydrazide (MH) triggered protective functions against both these clastogens, i.e., resulted in a significantly reduced yield of metaphases with chromatid aberrations. Protection was prevented by pretreatment with buthionine sulfoximine (BSI), an inhibitor of the synthesis of plant phytochelatins (PCs), indicating that the NiCl2-triggered PC synthesis may be involved in the protective functions induced by NiCl2 conditioning treatment. BSI (instead of NiCl2) conditioning treatment triggered protection against MH but not against TEM.  相似文献   

10.
The type of immune response required to protect mice against clinical disease during acute Neospora caninum challenge was investigated in BALB/c mice. Groups of female BALB/c mice were infected i.p. with N. caninum tachyzoites concomitant with either: (1) antibody to interferon-gamma; (2) recombinant murine interleukin-12; or (3) recombinant murine interleukin-12 plus antibody to interferon-gamma. Mice treated with anti-interferon-gamma alone had increased morbidity/mortality, decreased body weight, increased foci of liver necrosis and increased numbers of N. caninum tachyzoites in the lung by 7 days p.i. compared with controls. Increased disease and parasite load in the anti-interferon-gamma-treated mice was associated with antigen-specific antibody IgG1 > IgG2a and a three-fold decreased ratio of antigen-specific interferon-gamma:interleukin-4. Mice treated with recombinant murine interleukin-12 had decreased encephalitis and brain parasite load at 3 weeks p.i. compared with control mice treated with PBS. In recombinant murine interleukin-12-treated mice, decreased brain lesions and parasite load were associated with antigen-specific antibody IgG2a > IgG1 and a three-fold increased ratio of antigen-specific interferon-gamma:interleukin-4 from splenocytes; the interleukin-12 effect was dependent upon interferon-gamma, as indicated by concomitant in vivo interferon-gamma neutralisation. By 6 weeks p.i. with N. caninum, there were no differences in brain lesions and parasite load between interleukin-12- and PBS-treated groups, indicating that the effects of interleukin-12 on driving a protective type 1 response were transient. These data indicate a role for interferon-gamma, interleukin-12 and type 1 immune responses in control of acute neosporosis in mice.  相似文献   

11.
Epidemiological models generally explore the evolution of parasite life-history traits, namely, virulence and transmission, against a background of constant host life-history traits. However, life-history models have predicted the evolution of host traits in response to parasitism. The coevolution of host and parasite life-history traits remains largely unexplored. We present an epidemiological model, based on resource allocation theory, that provides an analysis of the coevolution between host reproductive effort and parasite virulence. This model allows for hosts with either a fixed (i.e., genetic) or conditional (i.e., a phenotypically plastic) response to parasitism. It also considers superinfections. We show that parasitism always favors increased allocation to host reproduction, but because of epidemiological feedbacks, the evolutionarily stable host reproductive effort does not always increase with parasite virulence. Superinfection drives the evolution of parasite virulence and acts on the evolution of the host through parasite evolution, generally leading to higher host reproductive effort. Coevolution, as opposed to cases where only one of the antagonists evolves, may generate correlations between host and parasite life-history traits across environmental gradients affecting the fecundity or the survival of the host. Our results provide a theoretical framework against which experimental coevolution outcomes or field observations can be contrasted.  相似文献   

12.
13.
C57BL/6 mice were vaccinated with a bacterially expressed and purified polyhistidine-tagged full-length version of the microneme protein NcMIC3 (recNcMIC3) emulsified in Ribi Adjuvant System (RAS). Subsequently, they were challenged by intraperitoneal inoculation of 2 x 10(6) live Neospora caninum tachyzoites. As controls, groups of mice received phosphate-buffered saline (PBS)-RAS alone (adjuvant control) or were treated with PBS before infection (infection control). The protective effect of vaccination was assessed by Neospora-specific polymerase chain reaction (PCR), immunohistochemical investigation of brain tissue, and serological means (enzyme-linked immunosorbent assay). Assessment by PCR performed on DNA from different organs revealed that in all treatment groups parasite DNA could only be detected in brain tissue. According to the PCR results. the recNcMIC3 vaccine conferred protection to 75% of mice (n = 16 in 2 independent experiments), whereas application of PBS-RAS and of PBS alone resulted in protection of 12.5% and 0% of mice, respectively (n = 16 as above). Mice in the PBS-treated infection control group were affected by evident clinical signs of neosporosis starting on day 6 postinfection (p.i.). Conversely, none of the animals treated with either PBS-RAS or recNcMIC3 exhibited any symptoms until day 21 p.i. Immunohistochemical staining of paraffin-embedded brain tissue sections confirmed the protective effect of recNcMIC3 vaccination. Quantitative Neospora-specific real-time PCR revealed that infection intensities were lower in the brain tissues of recNcMIC3-vaccinated mice compared with PBS-RAS-treated adjuvant control mice. Serological analysis showed that the protective effect observed in recNcMIC3-vaccinated mice was associated with a Th2-type IgG1 antibody response directed against native NcMIC3 and a mixed IgG1-IgG2a antibody response directed against the recombinant antigen itself. Taken together, these results demonstrated that recombinant NcMIC3 vaccine confers a significant protectivity against experimentally induced cerebral neosporosis in mice.  相似文献   

14.
Sodium arachidonate (50 mg/kg) given intravenously to male and female mice induces pulmonary emboli followed by respiratory distress and cyanosis. Female mice are significantly more resistant to this treatment than male mice. Cortisone pretreatment for four days to intact mice (10 mg/kg/day/4 days) had a significant protective effect in both males and females against arachidonate toxicity, eliminating the sex difference previously observed. Adrenalectomy four days before arachidonate infusion increased the sensitivity to SA and resulted in 100% mortality in both sexes. Pretreatment of adrenalized animals with cortisone significantly reduced to some degree the mortality rate in both sexes. Castration of male and female mice three weeks before adrenalectomy did not affect the mortality rate seen following adrenalectomy alone. In conclusion, exogenous cortical steroids augment the resistance of even intact mice and are absolutely necessary for survival in adrenalectomized animals. The observed sex differences in untreated intact animals is not seen after treatment with cortisone or adrenalectomy.  相似文献   

15.
The role of T lymphocyte subpopulations in the protection against intraperitoneal (i.p.) and peroral Encephalitozoon cuniculi infections was compared in adoptive-transfer experiments using severe combined immunodeficient mice. Whereas CD8+ T cell-depleted, but not CD4+ T cell-depleted, BALB/c splenocytes failed to protect the mice against i.p. infection, only SCID mice reconstituted with both CD4+ T lymphocyte- and CD8+ T lymphocyte-depleted splenocytes succumbed to peroral infection. The results indicate that whereas CD8+ T cells are critical for the protection against an i.p. E. cuniculi infection, both CD4+ and CD8+ T lymphocyte subpopulations play a substantive protective role in a peroral infection, i.e., natural route of infection.  相似文献   

16.
ABSTRACT. The life history of the protozoan parasite Ascogregarina taiwanensis in mosquito larvae ( Aedes albopictus , collected in southern Taiwan) was shown to consist of two consecutive stages—intracellular and extracellular. Light microscopy showed that most trophozoites moved into the Malpighian tubules and developed into giant trophozoites during the first day pupa. The locomotion may be associated with bristle-like ridges of the trophozoite. The stage for sexual reproduction, i.e. the gamete, was then formed by segmentation of the giant trophozoite and twisting off the anucleate extremities of the body. Sexual reproduction occurred via fertilization by fusion of two resulting gametes, presumably two opposed sexes. The fused gametes finally generate the formation of the gametocyst, within which oocysts develop by budding from the cytoplasmic mass. This type of sexual reproduction has not been reported previously in any gregarine protozoa. We here proposed it as a new hypothesis for further elucidation of the protozoan reproduction.  相似文献   

17.
Foraging host individuals can defend against fecal–orally transmitted parasites by avoiding feces‐contaminated patches, which has been widely documented among ungulates. However, it remains unclear whether smaller‐sized hosts (e.g., mice), with their high metabolism and constant needs for energy acquisition, can afford the same behavioral strategy. In this study, we used laboratory and field experiments to test whether feces‐contaminated patches are avoided by the Taiwan field mice Apodemus semotus. In the laboratory experiment, wild‐caught mice whose parasitic infection was not manipulated were given two options to forage from feces‐contaminated and uncontaminated patches. These naturally infected mice spent less time in feces‐contaminated than uncontaminated patches. In the field experiment, we reduced gastrointestinal parasite load of randomly chosen mice via anthelmintic treatment. Whereas the untreated mice did not discriminate among food patches with different levels of parasitism risk (i.e., high‐ or low‐risk patches containing conspecific feces of high or low parasite egg counts, no‐feces patches containing no feces), the treated mice spent less time in feces‐contaminated patches than in no‐feces patches. Similar to the larger‐sized ungulates, we demonstrated here that small mammals can also exhibit fecal‐avoidance foraging. Furthermore, such behavior may be influenced by both environmental parasitism risk and host infection status, which has implications in host–parasite transmission dynamics, namely the selective use of uncontaminated patches by the less‐infected (treated) mice may drive parasites to aggregate within the infected portion of a host population.  相似文献   

18.
In many epidemiological models of microparasitic infections it is assumed that the infection process is governed by the mass-action principle, i.e. that the infection rate per host and per parasite is a constant. Furthermore, the parasite-induced host mortality (parasite virulence) and the reproduction rate of the parasite are often assumed to be independent of the infecting parasite dose. However, there is empirical evidence against those three assumptions: the infection rate per host is often found to be a sigmoidal rather than a linear function of the parasite dose to which it is exposed; and the lifespan of infected hosts as well as the reproduction rate of the parasite are often negatively correlated with the parasite dose. Here, we incorporate dose dependences into the standard modelling framework for microparasitic infections, and draw conclusions on the resulting dynamics. Our model displays an Allee effect that is characterized by an invasion threshold for the parasite. Furthermore, in contrast to standard epidemiological models a parasite strain needs to have a basic reproductive rate that is substantially greater than 1 to establish an infection. Thus, the conditions for successful invasion of the parasite are more restrictive than in mass-action infection models. The analysis further suggests that negative correlations of the parasite dose with host lifespan and the parasite reproduction rate helps the parasite to overcome the invasion constraints of the Allee-type dynamics.  相似文献   

19.
Cellular populations involved in resistance against T. cruzi infection were characterized from mice chronically infected with the parasite. Mice transfused with spleen cells (SC), nylon-wool-non-adherent spleen cells (NWNA) or sera from mice chronically infected with T. cruzi, showed an enhanced resistance against challenge with the parasite. The protective activity of NWNA but not of SC was completely abrogated by treatment with anti-Thy1.2 monoclonal antibodies (mAb) and complement (C). Pretreatment of NWNA cells from chronically infected mice with either anti-L3T4 or anti-Lyt 2.2 mAb partially reduced the transfer of resistance. When both L3T4+ and Lyt2.2+ cells were depleted from NWNA populations, transfer of resistance was abolished. These results appear to indicate that L3T4+, Lyt2.2+ T cell subsets and non-T cells are involved in the immunity to T. cruzi.  相似文献   

20.
Development of a protective vaccine against Leishmania depends on antigen formulation and adjuvants that induce specific immunity and long-lasting immune responses. We previously demonstrated that BALB/c mice intranasally vaccinated with a plasmid DNA encoding the p36/LACK leishmanial antigen (LACK-DNA) develop a protective immunity for up to 3 months after vaccination, which was linked with the systemic expression of vaccine mRNA in peripheral organs. In this study, LACK-DNA vaccine was associated with biocompatible chitosan microparticles cross-linked with glyceraldehyde (CMC) to boost the long-lasting immunity against the late Leishmania infantum challenge. Infection at 7 days, 3 or 6 months after vaccination resulted in significantly lower parasite loads when compared with non-vaccinated controls. Besides, LACK-DNA-chitosan vaccinated mice showed long-time protection observed after the late time point challenge. The achieved protection was correlated with an enhanced spleen cell responsiveness to parasite antigens, marked by increased proliferation and IFN-γ as well as decreased IL-10 production. Moreover, we found diminished systemic levels of TNF-α that was compatible with the better health condition observed in LACK-DNA/CMC vaccinated-infected mice. Together, our data indicate the feasibility of chitosan microparticles as a delivery system tool to extend the protective immunity conferred by LACK-DNA vaccine, which may be explored in vaccine formulations against Leishmania parasite infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号