首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
We previously demonstrated a correlation between the presence of syncytium-inducing (SI) human immunodeficiency virus type 1 (HIV-1) variants showing tropism for cell line H9 and the occurrence of rapid CD4 cell decline and progression to AIDS. In contrast, in stable asymptomatic individuals, we detected only isolates with low replication rates that were non-syncytium-inducing (NSI) and nontropic for the H9 cell line. Here, we investigated the monocytotropism of established HIV-1 isolates with a panel of isolates and with biological HIV-1 clones with distinct phenotypes. Moreover, the prevalence and biological phenotypes of monocytotropic HIV-1 variants in the course of HIV-1 infection were analyzed in comparative primary isolation studies on peripheral blood lymphocytes (PBL) and monocyte-derived macrophages (MDM). In cell-free infection studies with MDM from eight blood donors, 13 of 17 NSI isolates but only 4 of 14 SI isolates were able to infect MDM. NSI isolates also infected significantly more different donors than SI variants (median, 3 of 8 versus 0 of 8). This enhanced monocytotropism of NSI isolates was confirmed in experiments with biological HIV-1 clones with distinct phenotypes recovered from the same donor. To investigate the prevalence and biological phenotypes of monocytotropic variants in different stages of HIV-1 infection, sequential isolates from peripheral blood mononuclear cell samples from nine asymptomatic individuals, five of whom progressed to AIDS and seven of whom had a known time of seroconversion, were recovered by cocultivation with both PBL and MDM. Monocytotropic variants were obtained from 37 of 42 time points. All monocytotropic variants were NSI in PBL culture and non-T-cell-line tropic, even when SI, T-cell-line-tropic HIV-1 variants could be recovered from the same patient sample by cocultivation with PBL. We conclude that monocytotropic HIV-1 variants mostly have an NSI phenotype in PBL and, in contrast to SI variants, are present at all stages of HIV-1 infection. These results suggest an important role for monocytotropic variants in the persistence of HIV-1 infection.  相似文献   

2.
The third variable region (V3) of the envelope protein of human immunodeficiency virus type 1 (HIV-1) contains group- and type-specific epitopes for neutralizing antibodies and contains determinants involved in viral tropism and syncytium-inducing (SI) activity. We studied the in vivo relationship between V3 sequences and viral phenotypes in 24 perinatally HIV-1-infected children. To avoid in vitro selection of intrapatient minor variants, genetic studies were performed directly on uncultured peripheral blood mononuclear cells (PBMC), and the tropisms of HIV-1 isolates were evaluated by culturing patients' PBMC directly with monocyte-derived macrophages, lymphocytes, and MT-2 cells. According to their phenotypes, we could define five types of primary isolates: (i) non-syncytium-inducing (NSI) macrophagetropic, (ii) NSI macrophage-lymphotropic, (iii) NSI lymphotropic, (iv) SI lympho-T-cell line-tropic, and (v) SI pleiotropic. The SI viral phenotype was correlated with a more advanced status of disease. Genetic analysis of intrapatient molecular variants revealed that no relationship between the degree of intrapatient V3 variability and the pattern of viral tropism existed; moreover, within a single patient, the values for V3 variability between CD4+ lymphocytes and CD14+ monocytes were similar, thus suggesting that in vivo variability of the monocytotropic variants is more extensive than previously appreciated. A comparison between the intrapatient major variants and the phenotype of primary isolates disclosed that a negatively charged amino acid at residue site 25 was associated with an NSI macrophage- and macrophage-lymphotropic viral phenotype. Finally, by comparing the V3 sequences derived from our study population with those of several prototypes, we observed that the majority of isolates circulating in Italy are related to the North American subtype B macrophagetropic isolates.  相似文献   

3.
We examined the relationship between the amino acid sequences of the V2 and V3 regions of the envelope protein and the biological properties of ten human immunodeficiency virus type 1 (HIV-1) primary isolates. The infectivity, cytopathic effect (CPE), and syncytium forming activity of these primary isolates were tested against three T cell lines (CEM, MT2, and MOLT4/CL.8 cells), CD8-depleted peripheral blood mononuclear cells (PBMC), and primary monocyte-derived macrophages (MDM) from seronegative donors. In addition to the viral groups which had the syncytium inducing/T-cell line tropic (SI/TT) phenotype or non-syncytium inducing/non-T cell line tropic (NSI/NT) phenotype (including the NSI/macrophage tropic (NSI/MT) phenotype), there was a group of viruses that infected one or two T cell lines and PBMC but could not mediate syncytium formation. We therefore classified this group of viruses as a non-syncytium inducing/partial T-cell line tropic (NSI/pTT) virus. To investigate the relationship between these viral phenotypes and the sequence variability of the V2 and V3 regions of the envelope, we cloned the viral gene segment and sequenced the individual isolates. The sequence data suggested that the SI/TT type changes in the V3 sequence alone mediate a partial T cell line tropism and mild cytopathic effect and that an isolate became more virulent (SI/TT phenotype) if there were additional changes in the V2 or other regions. On the other hand, sequence changes in the V2 region alone could not mediate phenotypic changes but some additional changes in the other variable regions (for example, V3) might be required for the phenotypic changes in combination with changes in V2. These findings also suggested that amino acid changes in both the V2 and V3 region are required for the development of virulent variants of HIV-1 that outgrow during advanced stages of the disease.  相似文献   

4.
The third variable domain (V3) of the envelope gene of human immunodeficiency virus type 1 contains a major neutralization epitope and determinants of syncytium-inducing (SI) capacity and replication rate (reviewed by J. P. Moore and P. L. Nara, AIDS Suppl. 2:S21-S33, 1991). Sequences were generated from DNA of samples taken 3 months apart over a period of 24 and 30 months from peripheral blood mononuclear cells (PBMC) of two individuals, both before and after cocultivation with uninfected donor PBMC. The isolated virus shifted from the non-syncytium-inducing (NSI) phenotype to the SI phenotype during the study period. This shift was associated with distinct changes in the V3 domain in both patients. The association of the phenotype shift with the V3 sequence changes was confirmed by construction of viruses with chimeric V3 loops. The shift from NSI- to SI-associated V3 variants was also seen in the uncultured PBMC of both patients, but not until 3 and 9 months after the detection of SI virus in culture. In the samples of uncultured PBMC DNA, several subgroups of sequences were found, indicating that the process of evolution may not be gradual and that several distinct populations can coexist. The paucity of intermediate sequences indicated that strong selection pressure was exerted on this part of the envelope. The early emergence of disease-associated SI variants in cultured material indicates that virus culture may have relevance for the in vivo situation.  相似文献   

5.
Primary human immunodeficiency virus type 1 (HIV-1) isolates were obtained from 22 patients with AIDS from northern Thailand, where HIV-1 is transmitted primarily through the heterosexual route. Viral sequences were determined for the 22 patients with AIDS, and all were subtype E HIV-1 on the basis of sequence analysis of a region from the envelope protein gp120. Syncytium-inducing (SI) viruses were detected for 16 of 22 patients with AIDS by using MT-2 cells. Characteristics of amino acid sequences in V3 which have not been reported previously for subtype B SI HIV-1 were associated with the subtype E HIV-1 SI phenotype. The SI viruses from our study population contain predominantly a GPGR or GPGH motif at the tip of the V3 loop, in contrast to the previously described subtype E HIV-1 from Thailand which contained predominantly GPGQ. All the SI viruses lost a potential N-linked glycosylation site in V3 which is highly conserved among previously described subtype E HIV-1 isolates from asymptomatic patients from Thailand. HIV-1 envelope sequences including V3 from some patients with AIDS were significantly more divergent than viruses from asymptomatic patients in Thailand characterized 2 years ago or earlier. These results suggest that emergence of subtype E SI HIV-1 variants is associated with the development of AIDS, as it is for subtype B HIV-1. The divergence of subtype E HIV-1 in patients with AIDS as the disease progresses, and the divergence of subtype E HIV-1 in the infected population as the epidemic continues in Thailand, may have important implications for vaccine development.  相似文献   

6.
In order to characterize the biological properties of human immunodeficiency virus type 1 (HIV-1) variants from different tissues (peripheral blood mononuclear cells [PBMC], lymph node, spleen, brain, and lung) of one patient, we have chosen long-range PCR to amplify virtually full-length HIV proviruses and to construct replication-competent viruses by adding a patient-specific 5' long terminal repeat. To avoid selection during propagation in CD4+ target cells, we transfected 293 cells and used the supernatants from these cells as challenge viruses for tropism studies after titration on human PBMC. Despite differences in the V3 loop of the major variants found in brain and lung compared to lymphoid tissues all recombinant HIV clones obtained showed identical cell tropism and replicative kinetics. After infection of human PBMC these viruses replicated with similar kinetics, with a slow/low-titer, non-syncytium-inducing phenotype. In contrast to the prediction of macrophage tropism, drawn from the V3 loop sequence, none of these viruses infected monocyte-derived macrophages. The challenge of blood dendritic cells by these recombinant viruses in the presence of tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and interleukin-4 resulted in a productive infection only after adding stimulated CD4+ T lymphocytes. Therefore, the biological properties of the HIV-1 variants derived from nonlymphoid tissue of this patient did not differ from those of HIV-1 variants from lymphoid tissue with respect to tropism for primary cells such as PBMC, macrophages, and blood dendritic cells.  相似文献   

7.
In a human immunodeficiency virus type 1 (HIV-1)-infected individual, immune-pressure-mediated positive selection operates to maintain the antigenic polymorphism on the gp120 third variable (V3) loop. Recently, we suggested on the basis of sequencing C2/V3 segments from an HIV-1 subtype E-infected family that a V3 sequence lineage group of the non-syncytium-inducing (NSI) variants (group 1) was relatively resistant to positive selection pressure (35). To better understand the relationship between the intensity of positive selection pressure and cell tropism of the virus, we determined the linkage between each V3 genotype and its function of directing coreceptor preference and MT2 cell tropism. The biological characterization of a panel of V3 recombinant viruses showed that all of the group 1 V3 sequences could confer an NSI/CCR5-using (NSI/R5) phenotype on HIV-1(LAI), whereas the group 2 V3 sequence, which was more positively charged than the group 1 sequence, dictated mainly a syncytium-inducing, CXCR4-using (SI/X4) phenotype. Phylogenetic analysis of C2/V3 sequences encoding group 1 or 2 V3 suggested that the variants carrying group 1 V3 are the ancestors of the intrafamilial infection and persisted in the family, while the variants carrying group 2 V3 evolved convergently from the group 1 V3 variants during disease progression in the individuals. Finally, a statistical test showed that the V3 sequence that could dictate an NSI/R5 phenotype had a synonymous substitution rate significantly higher than the nonsynonymous substitution rate. These data suggest that V3 sequences of the subtype E NSI/R5 variants are more resistant to positive selection pressure than those of the SI/X4 variants.  相似文献   

8.
To investigate the temporal relationship between human immunodeficiency virus type 1 (HIV-1) replicative capacity and syncytium-inducing (SI) phenotype, biological and genetic characteristics of longitudinally obtained virus clones from two HIV-1-infected individuals who developed SI variants were studied. In one individual, the emergence of rapidly replicating SI and non-syncytium-inducing (NSI) variants was accompanied by a loss of the slowly replicating NSI variants. In the other subject, NSI variants were always slowly replicating, while the coexisting SI variants showed an increase in the rate of replication. Irrespective their replicative capacity, the NSI variants remained present throughout the infection in both individuals. Phylogenetic analysis of the V3 region showed early branching of the SI variants from the NSI tree. Successful SI conversion seemed a unique event since no SI variants were found among later-stage NSI variants. This was also confirmed by the increasing evolutionary distance between the two subpopulations. At any time point during the course of the infection, the variation within the coexisting SI and NSI populations did not exceed 2%, indicating continuous competition within each viral subpopulation.  相似文献   

9.
We studied the temporal relationship between human immunodeficiency type 1 (HIV-1) quasispecies in tissues and in peripheral blood mononuclear cells (PBMC) of infected individuals. Sequential PBMC and tissue samples from various organs obtained at autopsy from three patients who died of AIDS-related complications were available for analysis. Biological HIV-1 clones were isolated from PBMC samples, and cellular tropism and syncytium-inducing (SI) capacity were determined. Genomic DNA was isolated from 1 cm3 of organ tissue, and proviral DNA was amplified by means of PCR and cloned with the PGEM-T vector system. A 185-bp region encompassing the third variable domain of the virus envelope, known to influence HIV-1 biological properties, was sequenced. HIV-1 could be amplified from all PBMC and organ samples, except from liver tissue for two patients. Both SI and non-syncytium-inducing (NSI) genotypes could be detected in the different tissues. Tissue-specific quasispecies were observed in brain, lung, and testis. Lymphoid tissues, such as bone marrow, lymph node, and spleen, harbored several different variants similar to those detected in blood in the last PBMC samples. In general, only tissues in which macrophages are likely to be the main target cell for HIV-1 harbored NSI HIV-1 sequences that clustered separately. Both SI and NSI sequences that clustered with sequences from late-stage PBMC were present in other tissues, which may indicate that the presence of HIV-1 in those tissues is secondary to lymphocyte infiltration rather than to tissue tropism of HIV-1 itself. These data suggest that the viral reservoir may be limited, which will have important implications for the success of HIV-1 eradication.  相似文献   

10.
11.
Syncytium-inducing (SI) variants of human immunodeficiency virus type 1 (HIV-1) are evolutionary variants that are associated with rapid CD4+ cell loss and rapid disease progression. The heteroduplex tracking assay (HTA) was used to detect evolutionary V3 variants by amplifying the V3 sequences from viral RNA derived from 50 samples of patient plasma. For this V3-specific HTA (V3-HTA), heteroduplexes were formed between the patient V3 sequences and a probe with the subtype B consensus V3 sequence. Evolution was then measured by divergence from the consensus. The presence of evolutionary variants was correlated with SI detection data on the same samples from the MT-2 cell culture assay. Evolutionary variants were correlated with the SI phenotype in 88% of the samples, and 96% of the SI samples contained evolutionary variants. In most cases the evolutionary V3 variants represented discrete clonal outgrowths of virus. Sequence analysis of the six discordant samples that did not show this correlation indicated that three non-syncytium-inducing (NSI) samples had V3 sequences that had evolved away from the consensus sequence but not toward an SI genotype. A fourth sample showed little evolution away from the consensus but was SI, which indicates that not all SI variants require basic substitutions in V3. The other two samples had SI-like genotypes and NSI phenotypes, suggesting that V3-HTA was able to detect SI emergence in these samples in the absence of their detection in vitro. V3-HTA was also used to confirm SI variant selection in MT-2 cells and to examine the possibility of variant selection during virus culture in peripheral blood cells.  相似文献   

12.
Despite multiple, high-risk sexual exposures, some individuals remain uninfected with human immunodeficiency virus type 1 (HIV-1). CD4+ lymphocytes from these individuals are less susceptible to infection in vitro with some strains of HIV-1, suggesting that the phenotype of the virus may influence its ability to interact with certain CD4+ cells. In the present study, we examined the susceptibility of CD4+ T lymphocytes and macrophages from two exposed uninfected individuals (EU2 and EU3) to infection with a panel of biologically cloned isolates of HIV-1 having either a non-syncytium-inducing (NSI) or a syncytium-inducing (SI) phenotype. Our results indicate that CD4+ T lymphocytes from EU2 and EU3 are resistant to infection with NSI isolates of HIV-1 but are susceptible to infection with primary SI isolates. In addition, we found that macrophages from EU2 and EU3 are resistant to infection with both NSI and SI isolates. The latter finding was confirmed by using several uncloned NSI and SI isolates obtained from patients during acute HIV-1 infection. In further experiments, env clones encoding glycoproteins characteristic of NSI or SI viruses were used in single-cycle infectivity assays to evaluate infection of CD4+ lymphocytes and macrophages from EU2 and EU3. Consistent with our previous results, we found that macrophages from these individuals are resistant to infection with NSI and SI env-pseudotyped viruses, while CD4+ T lymphocytes are resistant to NSI, but not SI, pseudotyped viruses. Overall, our results demonstrate that CD4+ cells from two exposed uninfected individuals resist infection in vitro with primary, macrophage-tropic, NSI isolates of HIV-1, which is the predominant viral phenotype found following HIV-1 transmission. Furthermore, infection with NSI isolates was blocked in both CD4+ T lymphocytes and macrophages from these individuals, suggesting that there may be a common mechanism for resistance in both cell types.  相似文献   

13.
HIV-1的表型及其感染的细胞嗜性   总被引:2,自引:0,他引:2  
张驰宇 《动物学研究》2004,25(4):363-368
HIV-1的表型分为合胞体诱导型(syncytium-inducing,SI)和非合胞体诱导型(non-syncytium-inducing,NSI)。依据所用辅助受体和感染靶细胞的不同,HIV-1又被分为R5、X4和R5X4型。R5和X4型病毒分别利用CCR5和CXCR4作为辅助受体,而R5X4型病毒可利用这两种辅助受体。在病毒的复制力、细胞嗜性以及合胞体诱导能力上,SI型与X4型病毒一致,NSI型与R5型病毒一致。在HIV-1感染过程中,疾病的发展伴随着病毒从NSI型向SI型、及R5型向X4型的转变。HIV-1的表型影响和决定着HIV-1的感染、传播及AIDS的疾病进程。HIV-1的表型和细胞嗜性主要由病毒gp120的V3区(特别是第11和25位的氨基酸)决定。V3区的氨基酸序列信息,将为预测HIV-1的表型,以及病毒感染后的疾病进程提供生物信息学的依据。  相似文献   

14.
Two distinct biological phenotypes of human immunodeficiency virus (HIV) have been described: the non-syncytium-inducing (NSI) phenotype, best characterized by the inability to infect MT-2 cells, and the syncytium-inducing (SI) phenotype, with the ability to infect MT-2 cells. The earliest virus population observed following HIV transmission is generally of the NSI phenotype, even after exposure to inocula of mixed NSI/SI phenotype. In this study, the issue of intrapatient selection of virus phenotype following transmission was addressed by studying two cases of accidental transmission. A comparison of the sequences of the V1-V2 and the V3 coding regions of the envelope gene and the p17 region of the gag gene showed that the donor-recipient pairs were tightly clustered in all gene segments, but away from local and published transmission controls. The intrasample variation of the p17 sequence was greater in the recipients and smaller in the donors than that of the V3 region sequence, indicating selection of V3 at transmission. In these transmission cases, the effects of an intravenous inoculation of a small quantity of blood containing predominantly SI V3 sequences (6 of 8 clonal sequences) were compared with those of an intramuscular inoculation of a large quantity of blood containing predominantly NSI viruses (14 of 16 clonal sequences). Both SI and NSI V3 regions were demonstrated to be phenotypic expressions of genetically related viral strains. The inoculation of the predominantly SI virus population resulted in the persistence of an SI virus population in the recipient and a rapid CD4+ T-cell decline. The inoculation of the predominantly NSI population resulted in a selective amplification of SI viruses before seroconversion, followed by a suppression of SI viruses at seroconversion and a rapid decline of CD4+ T-cell numbers. These data suggest that the suppression of SI viruses can be accomplished following the development of HIV-specific immunity and that the ability to suppress SI viruses does not prevent the development of immunodeficiency.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) primary infection is characterized by the use of CCR5 as a coreceptor for viral entry, which is associated with the non-syncytium-inducing (NSI) phenotype in lymphoid cells. Syncytium-inducing (SI) variants of HIV-1 appear in advanced stages of HIV-1 infection and are characterized by the use of CXCR4 as a coreceptor. The emergence of SI variants is accompanied by a rapid decrease in the number of T cells. However, it is unclear why SI variants emerge and what factors trigger the evolution of HIV from R5 to X4 variants. Interleukin-7 (IL-7), a cytokine produced by stromal cells of the thymus and bone marrow and by keratin, is known to play a key role in T-cell development. We evaluated IL-7 levels in plasma of healthy donors and HIV-positive patients and found significantly higher levels in HIV-positive patients. There was a negative correlation between circulating IL-7 levels and CD4(+) T-cell count in HIV-positive patients (r = -0.621; P < 0.001), suggesting that IL-7 may be involved in HIV-induced T-cell depletion and disease progression. IL-7 levels were higher in individuals who harbored SI variants and who had progressed to having CD4 cell counts of lower than 200 cells/microl than in individuals with NSI variants at a similar stage of disease. IL-7 induced T-cell proliferation and up-regulated CXCR4 expression in peripheral blood mononuclear cells in vitro. Taken together, our results suggest a role for IL-7 in the maintenance of T-cell regeneration and depletion by HIV in infected individuals and a possible relationship between IL-7 levels and the emergence of SI variants.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) variants passaged in T-cell lines, often called laboratory isolates, are potently neutralized by soluble CD4 (sCD4), whereas primary HIV-1 variants are highly resistant to sCD4 neutralization. Previously, it was demonstrated that the domain from V1 to V3 of the HIV-1 gp120 molecule contains one of the major determinants of sCD4 neutralization sensitivity, and the same region has also been implicated as influencing syncytium-inducing (SI) capacity and T-cell-line tropism. To determine possible differences in sCD4 neutralization sensitivity between phenotypically distinct primary HIV-1 variants, a panel of non-syncytium-inducing (NSI) and SI HIV-1 variants was studied. Primary NSI and SI HIV-1 variants appeared to be equally resistant to sCD4 neutralization. Consistent with this observation, sCD4 did not induce gp120 shedding from either primary NSI or SI HIV-1 variants at 37 degrees C. Thus, it is not the potential of certain primary HIV-1 variants to infect T-cell lines but rather their adaptation to T-cell lines that is reflected in specific properties of the viral envelope which influence sCD4 neutralization sensitivity.  相似文献   

17.
The distribution, cell tropism, and cytopathology in vivo of human immunodeficiency virus (HIV) was investigated in postmortem tissue samples from a series of HIV-infected individuals who died either of complications associated with AIDS or for unrelated reasons while they were asymptomatic. Proviral sequences were detected at a high copy number in lymphoid tissue of both presymptomatic patients and patients with AIDS, whereas significant infection of nonlymphoid tissue such as that from brains, spinal cords, and lungs were confined to those with AIDS. V3 loop sequences from both groups showed highly restricted sequence variability and a low overall positive charge of the encoded amino acid sequence compared with those of standard laboratory isolates of HIV type 1 (HIV-1). The low charge and the restriction in sequence variability were comparable to those observed with isolates showing a non-syncytium-inducing (NSI) and macrophage-tropic phenotype in vitro. All patients were either exclusively infected (six of seven cases) or predominantly infected (one case) with variants with a predicted NSI/macrophage-tropic phenotype, irrespective of the degree of disease progression. p24 antigen was detected by immunocytochemical staining of paraffin-fixed sections in the germinal centers within lymphoid tissue, although little or no antigen was found in areas of lymph node or spleen containing T lymphocytes from either presymptomatic patients or patients with AIDS. The predominant p24 antigen-expressing cells in the lungs and brains of the patients with AIDS were macrophages and microglia (in brains), frequently forming multinucleated giant cells (syncytia) even though the V3 loop sequences of these variants resembled those of NSI isolates in vitro. These studies indicate that lack of syncytium-forming ability in established T-cell lines does not necessarily predict syncytium-forming ability in primary target cells in vivo. Furthermore, variants of HIV with V3 sequences characteristic of NSI/macrophage-tropic isolates form the predominant population in a range of lymphoid and nonlymphoid tissues in vivo, even in patients with AIDS.  相似文献   

18.
The emergence of syncytium-inducing (SI) variants of human immunodeficiency virus type 1 (HIV-1) in infected individuals is an indicator of poor prognosis and is often correlated with faster CD4(+) cell depletion and rapid disease progression. Interleukin-4 (IL-4) is a pleiotropic cytokine with various immune-modulating functions including induction of immunoglobulin E (IgE) production in B cells, down-regulation of CCR5 (a coreceptor for HIV-1 non-SI [NSI] strains), and up-regulation of CXCR4 (a coreceptor for HIV-1 SI variants). Here we show that homozygosity of a polymorphism in the IL-4 promoter region, IL-4 -589T, is correlated with increased rates of SI variant acquisition in HIV-1-infected individuals in Japan. This mutation was also shown to be associated with elevated serum IgE levels in HIV-1-infected individuals, especially in those at advanced stages of disease. In contrast, neither a triallele polymorphism in IL-10, another Th2 cytokine, nor a biallele polymorphism in the RANTES promoter affected acquisition of the SI phenotype. This finding suggested that IL-4-589T increases IL-4 production in the human body and thus accelerates the phenotypic switch of HIV-1 from NSI to SI and possibly disease progression of AIDS.  相似文献   

19.
To study risk factors for homosexual transmission of human immunodeficiency virus type 1 (HIV-1), we compared 10 monogamous homosexual couples between whom transmission of HIV-1 had occurred with 10 monogamous homosexual couples between whom HIV-1 transmission had not occurred despite high-risk sexual behavior. In the group of individuals who did not transmit virus, peripheral cellular infectious load was lower and the CD4+ T-cell counts were higher than in the group of transmitters. HIV-1 RNA levels in serum did not differ between transmitters and nontransmitters. Compared with peripheral blood mononuclear cells (PBMC) from normal healthy blood donors, 8 of 10 nonrecipients and only 3 of 8 recipients had PBMC with reduced susceptibility to in vitro infection with non-syncytium-inducing (NSI) HIV-1 variants isolated from either their respective partners or an unrelated individual. No difference in susceptibility was observed for infection with a syncytium-inducing variant. Among the individuals who had PBMC with reduced susceptibility, five nonrecipients and one recipient had PBMC that were equally or even less susceptible to NSI variants than PBMC that had low susceptibility and that were derived from healthy blood donors that were heterozygous for a 32-bp deletion in the CCR5 gene (CCR5 Δ32). Three of these individuals (all nonrecipients) had a CCR5 Δ32 heterozygous genotype themselves, confirming an association between low susceptibility to NSI variants and CCR5 Δ32 heterozygosity. All three recipients with less susceptible PBMC had partners with a high infectious cellular load; inversely, both nonrecipients with normally susceptible PBMC had partners with a very low infectious cellular load. These results suggest that a combination of susceptibility of target cells and inoculum size upon homosexual exposure largely determines whether HIV-1 infection is established.  相似文献   

20.
Sequence change in different hypervariable regions of the external membrane glycoprotein (gp120) of human immunodeficiency virus type 1 (HIV-1) was studied. Viral RNA associated with cell-free virus particles circulating in plasma and proviral DNA present in HIV-infected peripheral blood mononuclear cells (PBMCs) were extracted from blood samples of two currently asymptomatic hemophiliac patients over a 5-year period. HIV sequences were amplified by polymerase chain reaction to allow analysis in the V3, V4, and V5 hypervariable regions of gp120. Rapid sequence change, consisting of regular replacements by a succession of distinct viral populations, was found in both plasma virus and PBMC provirus populations. Significant differences between the frequencies of sequence variants in DNA and RNA populations within the same sample were observed, indicating that at any one time point, the predominant plasma virus variants were antigenically distinct from viruses encoded by HIV DNA sequences in PBMCs. How these findings contribute to current models of HIV pathogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号