首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After having set up the computational methodology for Cu(I)-sulfur systems as models for copper proteins, namely using the simple ligands H(2)S, HS(-), CH(3)SH, and CH(3)S(-), the Cu(I)-Cysteine systems have been investigated: [Cu(I)( S -H(2)Cys) (n) ](+) (H(2)Cys, cysteine, NH(2),SH,COOH) [Cu(I)( S -HCys) (n) ](1-) (n) (NH(2),S(-),COOH). Finally, the structures for bi-nuclear [Formula: see text] (Et, CH(2)CH(3)), [Formula: see text] and tri-nuclear [Cu(I)( S -SH)](3), [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] (NH(2),SH,COOH), [Formula: see text] (NH(2),S(-),COOH, and NH(2),SH,COO(-)), as well as [Formula: see text] (NH(2),S(-),COO(-)), were also optimized to mimic the active center for a metallo-chaperone copper transport protein (CopZ). The X-ray structures for the biomolecules were matched fairly well as regards the Cu-S bond distances and Cu…Cu contact distances in the case the model cysteine S atom is deprotonated. Upon protonation of ligand S atoms, the conformation of clusters is altered and might bring about the di- and tri-nuclear core breakage. These findings suggest that subtle protonation/deprotonation steps, i.e. small and/or local pH changes play a significant role for copper transport processes.  相似文献   

2.
Escherichia coli CopA is a copper ion-translocating P-type ATPase that confers copper resistance. CopA formed a phosphorylated intermediate with [gamma-(32)P]ATP. Phosphorylation was inhibited by vanadate and sensitive to KOH and hydroxylamine, consistent with acylphosphate formation on conserved Asp-523. Phosphorylation required a monovalent cation, either Cu(I) or Ag(I). Divalent cations Cu(II), Zn(II), or Co(II) could not substitute, signifying that the substrate of this copper-translocating P-type ATPase is Cu(I) and not Cu(II). CopA purified from dodecylmaltoside-solubilized membranes similarly exhibited Cu(I)/Ag(I)-stimulated ATPase activity, with a K(m) for ATP of 0.5 mm. CopA has two N-terminal Cys(X)(2)Cys sequences, Gly-Leu-Ser-Cys(14)-Gly-His-Cys(17), and Gly-Met-Ser-Cys(110)-Ala-Ser-Cys(113), and a Cys(479)-Pro-Cys(481) motif in membrane-spanning segment six. The requirement of these cysteine residues was investigated by the effect of mutations and deletions. Mutants with substitutions of the N-terminal cysteines or deletion of the first Cys-(X)(2)-Cys motif formed acylphosphate intermediates. From the copper dependence of phosphoenzyme formation, the mutants appear to have 2-3 fold higher affinity for Cu(I) than wild type CopA. In contrast, substitutions in Cys(479) or Cys(481) resulted in loss of copper resistance, transport and phosphoenzyme formation. These results imply that the cysteine residues of the Cys-Pro-Cys motif (but not the N-terminal cysteine residues) are required for CopA function.  相似文献   

3.
Copper is an essential trace element which forms an integral component of many enzymes. While trace amounts of copper are needed to sustain life, excess copper is extremely toxic. An attempt is made here to present the current understanding of the normal transport of copper in relation to the absorption, intracellular transport and toxicity. Wilson disease is a genetic disorder of copper transport resulting in the accumulation of copper in organs such as liver and brain which leads to progressive hepatic and neurological damage. The gene responsible for Wilson disease (ATP7B) is predicted to encode a putative copper-transporting P-type ATPase. An important feature of this ATPase is the presence of a large N-terminal domain that contains six repeats of a copper-binding motif which is thought to be responsible for binding this metal prior to its transport across the membrane. We have cloned, expressed and purified the N-terminal domain (approximately 70 kD) of Wilson disease ATPase. Metal-binding properties of the domain showed the protein to bind several metals besides copper; however, copper has a higher affinity for the domain. The copper is bound to the domain in Cu(I) form with a copper: protein ratio of 6.5:1. X-ray absorption studies strongly suggest Cu(I) atoms are ligated to cysteine residues. Circular dichroism spectral analyses suggest both secondary and tertiary structural changes upon copper binding to the domain. Copper-binding studies suggest some degree of cooperativity in binding of copper. These studies as well as detailed structural information of the copper-binding domain will be crucial in determining the specific role played by the copper-transporting ATPase in the homeostatic control of copper in the body and how the transport of copper is interrupted by mutations in the ATPase gene.  相似文献   

4.
We have mapped the residues in the sixth transmembrane domains (TMs 6) of the mu, delta, and kappa opioid receptors that are accessible in the binding-site crevices by the substituted cysteine accessibility method (SCAM). We previously showed that ligand binding to the C7.38S mutants of the mu and kappa receptors and the wild-type delta receptor was relatively insensitive to methanethiosulfonate ethylammonium (MTSEA), a positively charged sulfhydryl-specific reagent. These MTSEA-insensitive constructs were used as the templates, and 22 consecutive residues in TM6 (excluding C6.47) of each receptor were mutated to cysteine, 1 at a time. Most mutants retained binding affinities for [3H]diprenorphine, a nonselective opioid antagonist, similar to that of the template receptors. Treatment with MTSEA significantly inhibited [3H]diprenorphine binding to 11 of 22 mutants of the rat mu receptor and 9 of 22 mutants of the human delta receptor and 10 of 22 mutants of the human kappa receptor. Naloxone or diprenorphine protected all sensitive mutants, except the A6.42(287)C mu mutant. Thus, V6.40, F6.44, W6.48, I6.51, Y6.54, V6.55, I6.56, I6.57, K6.58, and A6.59 of the mu receptor; F6.44, I6.51, F6.54, V6.55, I6.56, V6.57, W6.58, T6.59, and L6.60 of the delta receptor; and F6.44, W6.48, I6.51, F6.54, I6.55, L6.56, V6.57, E6.58, A6.59, and L6.60 of the kappa receptor are on the water-accessible surface of the binding-site crevices. The accessibility patterns of residues in the TMs 6 of the mu, delta, and kappa opioid receptors are consistent with the notion that the TMs 6 are in alpha-helical conformations with a narrow strip of accessibility on the intracellular side of 6.54 and a wider area of accessibility on the extracellular side of 6.54, likely due to a proline kink at 6.50 that bends the helix in toward the binding pocket and enables considerable motion in this region. The wider exposure of residues 6.55-6.60 to the binding-site crevice, combined with the divergent amino acid sequences, is consistent with the inferred role of residues in this region in determining ligand binding selectivity. The conservation of the accessibility pattern on the cytoplasmic side of 6.54 suggests that this region may be important for receptor activation. This accessibility pattern is similar to that of the D2 dopamine receptor, the only other GPCR in which TM6 has been mapped by SCAM. That opioid receptors and the remotely related D2 dopamine receptor have similar accessibility patterns in TM6 suggest that these segments of GPCRs in the rhodopsin-like subfamily not only share secondary structure but also are packed similarly into the transmembrane bundle and thus have similar tertiary structure.  相似文献   

5.
The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D (1)H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.  相似文献   

6.
A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the α-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the “unbound” and “bound” states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2∼P7∼P10 > P9∼P6 > P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy-entropy compensation for all the mutants. This compensation appears to derive from an increase in conformational flexibility concomitant to the weakening of the interactions at the binding interface. We conclude that our approach, based on DSC and site-directed mutagenesis analysis of chimeric fusion proteins, may serve as a suitable tool to analyse the energetics of weak biomolecular interactions such as those involving SH3 domains.  相似文献   

7.
8.
Literature estimates of metal-protein affinities are widely scattered for many systems, as highlighted by the class of metallo-chaperone proteins, which includes human Atox1. The discrepancies may be attributed to unreliable detection probes and/or inconsistent affinity standards. In this study, application of the four Cu(I) ligand probes bicinchoninate, bathocuproine disulfonate, dithiothreitol (Dtt), and glutathione (GSH) is reviewed, and their Cu(I) affinities are re-estimated and unified. Excess bicinchoninate or bathocuproine disulfonate reacts with Cu(I) to yield distinct 1:2 chromatophoric complexes [Cu(I)L(2)](3-) with formation constants β(2) = 10(17.2) and 10(19.8) m(-2), respectively. These constants do not depend on proton concentration for pH ≥7.0. Consequently, they are a pair of complementary and stable probes capable of detecting free Cu(+) concentrations from 10(-12) to 10(-19) m. Dtt binds Cu(I) with K(D) ~10(-15) m at pH 7, but it is air-sensitive, and its Cu(I) affinity varies with pH. The Cu(I) binding properties of Atox1 and related proteins (including the fifth and sixth domains at the N terminus of the Wilson protein ATP7B) were assessed with these probes. The results demonstrate the following: (i) their use permits the stoichiometry of high affinity Cu(I) binding and the individual quantitative affinities (K(D) values) to be determined reliably via noncompetitive and competitive reactions, respectively; (ii) the scattered literature values are unified by using reliable probes on a unified scale; and (iii) Atox1-type proteins bind Cu(I) with sub-femtomolar affinities, consistent with tight control of labile Cu(+) concentrations in living cells.  相似文献   

9.
Cystatins, a family of structurally related cysteine proteinase inhibitors, have proved to be useful model system to study amyloidogenesis. We have extended previous studies of the kinetics of amyloid-fibril formation by human stefin B (cystatin B) and some of its mutants, and proposed an improved model for the reaction. Overall, the observed kinetics follow the nucleation and growth behavior observed for many other amyloidogenic proteins. The minimal kinetic scheme that best fits measurements of changes in CD and thioflavin T fluorescence as a function of protein concentration and temperature includes nucleation (modeled as N(I) irreversible transitions with equivalent rates (k(I)), which fitted with N(I) = 64), fibril growth and nonproductive oligomerization, best explained by an off-pathway state with a rate-limiting escape rate. Three energies of activation were derived from global fitting to the minimal kinetic scheme, and independently through the fitting of the individual component rates. Nucleation was found to be a first-order process within an oligomeric species with an enthalpy of activation of 55 +/- 4 kcal mol(-1). Fibril growth was a second-order process with an enthalpy of activation (27 +/- 5 kcal mol(-1)), which is indistinguishable from that of tetramer formation by cystatins, which involves limited conformational changes including proline trans to cis isomerization. The highest enthalpy of activation (95 +/- 5 kcal mol(-1) at 35 degrees C), characteristic of a substantial degree of unfolding as observed prior to domain-swapping reactions, equated with the escape rate of the off-pathway oligomeric state.  相似文献   

10.
SecA is an ATPase nanomotor critical for bacterial secretory protein translocation. Secretory proteins carry an amino-terminal signal peptide that is recognized and bound by SecA followed by its transfer across the SecYEG translocon. While this process is crucial for the onset of translocation, exactly where the signal peptide interacts with SecA is unclear. SecA protomers also interact among themselves to form dimers in solution, yet the oligomeric interface and the residues involved in dimerization are unknown. To address these issues, we utilized the substituted cysteine accessibility method (SCAM); we generated a library of 23 monocysteine SecA mutants and probed for the accessibility of each mutant cysteine to maleimide-(polyethylene glycol)2-biotin (MPB), a sulfhydryl-labeling reagent, both in the presence and absence of a signal peptide. Dramatic differences in MPB labeling were observed, with a select few mutants located at the preprotein cross-linking domain (PPXD), the helical wing domain (HWD), and the helical scaffold domain (HSD), indicating that the signal peptide binds at the groove formed between these three domains. The exposure of this binding site is varied under different conditions and could therefore provide an ideal mechanism for preprotein transfer into the translocon. We also identified residues G793, A795, K797, and D798 located at the two-helix finger of the HSD to be involved in dimerization. Adenosine-5′-(γ-thio)-triphosphate (ATPγS) alone and, more extensively, in conjunction with lipids and signal peptides strongly favored dimer dissociation, while ADP supports dimerization. This study provides key insight into the structure-function relationships of SecA preprotein binding and dimer dissociation.  相似文献   

11.
The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D 1H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.  相似文献   

12.
2-Methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH 28080) is a reversible inhibitor specific for the gastric proton pump. The inhibition pattern is competitive with K(+). Here we studied the binding sites of this inhibitor on the putative three-dimensional structure of the gastric proton pump alpha-subunit that was constructed by homology modeling based on the structure of sarcoplasmic reticulum Ca(2+) pump. Alanine and serine mutants of Tyr(801) located in the fifth transmembrane segment of the gastric proton pump alpha-subunit retained the (86)Rb transport and K(+)-dependent ATPase (K(+)-ATPase) activities. These mutants showed 60-80-times lower sensitivity to SCH 28080 than the wild type in the (86)Rb transport activity. The K(+)-ATPase activities of these mutants were not completely inhibited by SCH 28080. The sensitivity to SCH 28080 was dependent on the bulkiness of the side chain at this position. Therefore, the side chain of Tyr(801) is important for the interaction with this inhibitor. In the three-dimensional structure of the E(2) form (conformation with high affinity for K(+)) of the gastric proton pump, Tyr(801) faces a cavity surrounded by the first, fourth, fifth, sixth, and eighth transmembrane segments and fifth/sixth, seventh/eighth, and ninth/tenth loops. SCH 28080 can dock in this cavity. However, SCH 28080 cannot dock in the same location in the E(1) form (conformation with high affinity for proton) of the gastric proton pump due to the drastic rearrangement of the transmembrane helices between the E(1) and E(2) forms. These results support the idea that this cavity is the binding pocket of SCH 28080.  相似文献   

13.
ATP-binding cassette (ABC) proteins transport a diverse collection of substrates. It is presumed that these proteins couple ATP hydrolysis to substrate transport, yet ATPase activity has been demonstrated for only a few. To provide direct evidence for such activity in Ste6p, the yeast ABC protein required for the export of a-factor mating pheromone, we established conditions for purification of Ste6p in biochemical quantities from both yeast and Sf9 insect cells. The basal ATPase activity of purified and reconstituted Ste6p (V(max) = 18 nmol/mg/min; K(m) for MgATP = 0.2 mm) compares favorably with several other ABC proteins and was inhibited by orthovanadate in a profile diagnostic of ABC transporters (apparent K(I) = 12 microm). Modest stimulation (approximately 40%) was observed upon the addition of a-factor either synthetic or in native form. We also used an 8-azido-[alpha-(32)P]ATP binding and vanadate-trapping assay to examine the behavior of wild-type Ste6p and two different double mutants (G392V/G1087V and G509D/G1193D) shown previously to be mating-deficient in vivo. Both mutants displayed a diminished ability to hydrolyze ATP, with the latter uncoupled from pheromone transport. We conclude that Ste6p catalyzes ATP hydrolysis coupled to a-factor transport, which in turn promotes mating.  相似文献   

14.
The copper-transporting ATPases are 165-175 kDa membrane proteins, composed of 8 transmembrane segments and two large cytosolic domains, the N-terminal copper-binding domain and the catalytic ATP-hydrolyzing domain. In ATP7B, the Wilson disease protein, the N-terminal domain is made up of six metal-binding sub-domains containing the MXCXXC motif which is known to coordinate copper via the two cysteine residues. We have expressed the N-terminal domain of ATP7B as a soluble C-terminal fusion with the maltose binding protein. This expression system produces a protein which can be reconstituted with copper without recourse to the harsh denaturing conditions or low pH reported by other laboratories. Here we describe the reconstitution of the metal binding domains (MBD) with Cu(I) using a number of different protocols, including copper loading via the chaperone, Atox1. X-ray absorption spectra have been obtained on all these derivatives, and their ability to bind exogenous ligands has been assessed. The results establish that the metal-binding domains bind Cu(I) predominantly in a bis cysteinate environment, and are able to bind exogenous ligands such as DTT in a similar fashion to Atox1. We have further observed that exogenous ligand binding induces the formation of a Cu-Cu interaction which may signal a conformational change of the N-terminal domain.  相似文献   

15.
Metallothionein-3 (MT-3), also known as neuronal growth inhibitory factor, is a metalloprotein expressed almost exclusively in the brain. Isolated MT-3 contains four Cu(I) and three Zn(II) ions organized in homometallic metal-thiolate clusters located in two independent protein domains. In this work a Cu(I) binding to metal-free MT-3 has been studied, aiming at the better understanding of the domain specificity for this metal ion. The cluster formation was followed by electronic absorption, circular dichroism, and by luminescence spectroscopy at room temperature and 77 K. The stepwise incorporation of Cu(I) into recombinant human apo-MT-3 revealed the cooperative formation of two Cu(4)S(9) clusters in succession, formed in both protein domains, i.e. Cu(4)- and Cu(8)-MT-3. Further binding of four Cu(I) caused an expansion of these Cu(I) cores, leading to fully metal-loaded Cu(12)-MT-3 containing Cu(6)S(9) and Cu(6)S(11) clusters in the beta- and alpha-domains of the protein, respectively. The location of the preferentially formed Cu(4) cluster in the protein was established by immunochemistry. Using domain-specific antibodies, in combination with limited tryptic digestion of a partially metal-occupied Cu(4)-MT-3, we could demonstrate that the Cu(4)S(9) cluster is located in the N-terminal beta-domain of the protein that contains a total of nine cysteine ligands.  相似文献   

16.
To examine the potential role of methanobactin (mb) as the extracellular component of a copper acquisition system in Methylosinus trichosporium OB3b, the metal binding properties of mb were examined. Spectral (UV-visible, fluorescence, and circular dichroism), kinetic, and thermodynamic data suggested copper coordination changes at different Cu(II):mb ratios. Mb appeared to initially bind Cu(II) as a homodimer with a comparatively high copper affinity at Cu(II):mb ratios below 0.2, with a binding constant (K) greater than that of EDTA (log K = 18.8) and an approximate DeltaG degrees of -47 kcal/mol. At Cu(II):mb ratios between 0.2 and 0.45, the K dropped to (2.6 +/- 0.46) x 10(8) with a DeltaG degrees of -11.46 kcal/mol followed by another K of (1.40 +/- 0.21) x 10(6) and a DeltaG degrees of -8.38 kcal/mol at Cu(II):mb ratios of 0.45-0.85. The kinetic and spectral changes also suggested Cu(II) was initially coordinated to the 4-thiocarbonyl-5-hydroxy imidazolate (THI) and possibly Tyr, followed by reduction to Cu(I), and then coordination of Cu(I) to 4-hydroxy-5-thiocarbonyl imidazolate (HTI) resulting in the final coordination of Cu(I) by THI and HTI. The rate constant (k(obsI)) of binding of Cu(II) to THI exceeded that of the stopped flow apparatus that was used, i.e., >640 s(-)(1), whereas the coordination of copper to HTI showed a 6-8 ms lag time followed by a k(obsII) of 121 +/- 9 s(-)(1). Mb also solubilized and bound Cu(I) with a k(obsI) to THI of >640 s(-)(1), but with a slower rate constant to HTI (k(obsII) = 8.27 +/- 0.16 s(-)(1)), and appeared to initially bind Cu(I) as a monomer.  相似文献   

17.
The AAA-ATPase p97/VCP facilitates protein dislocation during endoplasmic reticulum-associated degradation (ERAD). To understand how p97/VCP accomplishes dislocation, a series of point mutants was made to disrupt distinguishing structural features of its central pore. Mutants were evaluated in vitro for ATPase activity in the presence and absence of synaptotagmin I (SytI) and in vivo for ability to process the ERAD substrate TCRalpha. Synaptotagmin induces a 4-fold increase in the ATPase activity of wild-type p97/VCP (p97/VCP(wt)), but not in mutants that showed an ERAD impairment. Mass spectrometry of crosslinked synaptotagmin . p97/VCP revealed interactions near Trp551 and Phe552. Additionally, His317, Arg586, and Arg599 were found to be essential for substrate interaction and ERAD. Except His317, which serves as an interaction nexus, these residues all lie on prominent loops within the D2 pore. These data support a model of substrate dislocation facilitated by interactions with p97/VCP's D2 pore.  相似文献   

18.
Human angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a zinc metalloprotease whose closest homolog is angiotensin I-converting enzyme. To begin to elucidate the physiological role of ACE2, ACE2 was purified, and its catalytic activity was characterized. ACE2 proteolytic activity has a pH optimum of 6.5 and is enhanced by monovalent anions, which is consistent with the activity of ACE. ACE2 activity is increased approximately 10-fold by Cl(-) and F(-) but is unaffected by Br(-). ACE2 was screened for hydrolytic activity against a panel of 126 biological peptides, using liquid chromatography-mass spectrometry detection. Eleven of the peptides were hydrolyzed by ACE2, and in each case, the proteolytic activity resulted in removal of the C-terminal residue only. ACE2 hydrolyzes three of the peptides with high catalytic efficiency: angiotensin II () (k(cat)/K(m) = 1.9 x 10(6) m(-1) s(-1)), apelin-13 (k(cat)/K(m) = 2.1 x 10(6) m(-1) s(-1)), and dynorphin A 1-13 (k(cat)/K(m) = 3.1 x 10(6) m(-1) s(-1)). The ACE2 catalytic efficiency is 400-fold higher with angiotensin II () as a substrate than with angiotensin I (). ACE2 also efficiently hydrolyzes des-Arg(9)-bradykinin (k(cat)/K(m) = 1.3 x 10(5) m(-1) s(-1)), but it does not hydrolyze bradykinin. An alignment of the ACE2 peptide substrates reveals a consensus sequence of: Pro-X((1-3 residues))-Pro-Hydrophobic, where hydrolysis occurs between proline and the hydrophobic amino acid.  相似文献   

19.
We have used the FliTrx cell surface display system to identify disulfide-constrained dodecapeptides binding to the semiconducting metal oxides Cu(2)O and ZnO. Sequence analysis of the inserts revealed that the two populations exhibit similar, yet subtly different patterns of amino acid usage. Both sets of binders were enriched in arginine, tryptophan, and glycine with a higher degree of positional preference in the case of Cu(2)O binders. Tyrosine, proline, and serine were underrepresented in both populations. Peptides binding electrodeposited Cu(2)O or ZnO with high avidity could be subdivided into two classes based on pI and hydrophilicity. In the hydrophilic and positively charged Class I binders, the Arg-X-X-Arg tetrapeptide appears to be implicated in metal oxide binding, whereas Arg-Arg and Arg-Lys pairs allow for discrimination between Cu(2)O and ZnO. Molecular dynamics simulations of the disulfide-constrained peptides suggest that the aforementioned motifs are important to properly orient two basic residues that are likely to contact the metal oxides. The implications of our results in understanding the rules governing the interaction between peptides and inorganic compounds and in their use for the design of hybrid nanoarchitectures are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号