共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
3.
Ataxia telangiectasia mutated (ATM) is a PI3-kinase-like kinase (PIKK) associated with DNA double-strand break (DSB) repair and cell cycle control. We have previously reported comparable efficiencies of DSB repair in nuclear extracts from both ATM deficient (A-T) and control (ATM+) cells; however, the repair products from the A-T nuclear extracts contained deletions encompassing longer stretches of DNA compared to controls. These deletions appeared to result from end-joining at sites of microhomology. These data suggest that ATM hinders error-prone repair pathways that depend on degradation of DNA ends at a break. Such degradation may account for the longer deletions we formerly observed in A-T cell extracts. To address this possibility we assessed the degradation of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in signal intensity from full-length products to shorter products in A-T nuclear extracts, and addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was both ATP-dependent and inhibited by the PIKK inhibitors wortmannin and caffeine. Addition of pre-phosphorylated ATM to an A-T nuclear extract in the presence of PIKK inhibitors was insufficient in repressing degradation, indicating that kinase activities are required. These results demonstrate a role for ATM in preventing the degradation of DNA ends possibly through repressing nucleases implicated in microhomology-mediated end-joining. 相似文献
4.
5.
The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity 总被引:84,自引:0,他引:84
Genetic studies of adeno-associated virus (AAV) indicate that two AAV genes are required for viral DNA replication: the palindromic terminal repeat, which is the origin for DNA replication, and the rep gene, which codes for a family of at least four viral nonstructural proteins. To determine the biochemical function of the Rep proteins, we have purified the AAV Rep68 protein to apparent homogeneity. We find that it contains a site-specific and strand-specific endonuclease activity that specifically cuts the AAV origin at the terminal resolution site (TRS). The TRS endonuclease requires the presence of ATP for activity and becomes covalently attached to the 5' end at the cut site. In addition to the specific endonuclease activity, Rep68 also contains a DNA helicase activity. These results demonstrate that the large AAV Rep proteins have a direct role in AAV DNA replication; namely, they provide the activities required for the resolution of covalently joined AAV termini. 相似文献
6.
7.
8.
In solution, the TATA box binding protein from S. cerevisiae (yTBP) is only minimally oriented when bound to the adenovirus major late promoter (AdMLP) and the yeast CYC1 promoter. At equilibrium, approximately 60% of the complexes are assembled in the orientation observed within crystal structures; 40% are assembled in the opposite orientation. Here we use stopped-flow fluorescence resonance energy transfer (FRET) to study the association kinetics of the two TBP.TATA box orientational isomers. Kinetics were determined by monitoring FRET between a unique tryptophan residue engineered into either the C- or the N-terminal stirrup of the conserved C-terminal subunit of yeast TBP (yTBPc) and an aminocoumarin moiety appended either upstream or downstream of the TATA box. Together, these constructs permitted a simultaneous yet independent monitor of the kinetics of TBP binding in both orientations. Not only did our results provide an independent confirmation of the free energy difference between the two orientational isomers, but they also showed that the orientational binding preference at equilibrium is a result of a faster association rate when TBP binds DNA in the orientation observed in the crystal structure. 相似文献
9.
10.
11.
12.
13.
14.
15.
RAD50 function of Saccharomyces cerevisiae is required during vegetative growth for recombinational repair of DNA double strand breaks, and during meiosis for initiation of meiotic recombination and formation of synaptonemal complex. RAD50 encodes a 153 kDa polypeptide which includes an amino-terminal ATP binding domain essential for function and two long heptad repeat regions. We show below that RAD50 protein purified from yeast exhibits ATP-dependent binding to double stranded DNA. Physical properties of the purified protein are also described. Models for RAD50 function in vivo are discussed. 相似文献
16.
Ribonucleotide reductases (RNRs) are required for the synthesis of deoxyribonucleoside triphosphates (dNTPs) from ribonucleotides. In Escherichia coli, regulation of RNR expression is co‐ordinated with the cell cycle, and involves several regulatory proteins. One of these, NrdR, has recently been shown to regulate all three nrd operons that encode RNR isoenzymes. Repression by NrdR is believed to be stimulated by elevated dNTPs, although there is no direct evidence for this model. Here, we sought to elucidate the mechanism by which NrdR regulates nrd expression according to the abundance of (d)NTPs. We determined that ATP and dATP bind to NrdR in a negatively cooperative fashion, such that neither can fully occupy the protein. Both nucleotides also appear to act as positive heterotropic effectors, since the binding of one stimulates binding of the other. Nucleotide binding stimulates self‐association of NrdR, with tri‐ and diphosphates stimulating oligomerization more effectively than monophosphates. As‐prepared NrdR contains (deoxy)nucleoside monophosphates, diphosphates and triphosphates, and its DNA binding activity is inhibited by triphosphates and diphosphates but not by monophosphates. We propose a model in which NrdR selectively binds (deoxy)nucleoside triphosphates, which are hydrolysed to their monophosphate counterparts in order to regulate DNA binding. 相似文献
17.
c-Crk is a proto-oncogene product composed largely of Src homology (SH) 2 and 3 domains. We have identified a kinase activity, which binds to the first Crk SH3 domain and phosphorylates c-Crk on tyrosine 221 (Y221), as c-Abl. c-Abl has a strong preference for c-Crk, when compared with common tyrosine kinase substrates. The phosphorylation of c-Crk Y221 creates a binding site for the Crk SH2 domain. Bacterially expressed c-Crk protein lacks phosphorylation on Y221 and can bind specifically to several proteins, while mammalian c-Crk, which is phosphorylated on tyrosine, remains uncomplexed. The protein binding activity of c-Crk is therefore likely regulated by a mechanism similar to that of the Src family kinases. v-Crk is truncated before c-Crk Y221 and forms constitutive complexes with c-Abl and other proteins. Our results suggest that c-Abl regulates c-Crk function and that it could be involved in v-Crk transformation. 相似文献
18.
Previous studies have shown that p34(SEI-1), also known as TRIP-Br1, is involved in cell cycle regulations by interacting with a number of important proteins including CDK4. However, the detailed mechanism and structural basis of the interaction remains to be determined. We report the use of in vitro studies to address these problems. First, it was shown that p34(SEI-1) binds to CDK4 directly, and the binding does not compete directly with p16. In the presence of p16, a quaternary complex is formed between p34(SEI-1), CDK4, cyclin D2, and p16. Second, it was found that p34(SEI-1) activates the kinase activity of CDK4 at lower concentrations (reaching the maximum at 500 nM) but inhibits the same activity at higher concentrations, implying that p34(SEI-1)-mediated CDK4 activation is dose-dependent. Again, the effects of p34(SEI-1) and p16 are independent of each other. Third, it was shown that p34(SEI-1) possesses a LexA-mediated transactivation activity. Finally, a set of truncation mutants were used to dissect the structural elements responsible for the different functions of p34(SEI-1). The results indicate that the fragment 30-160 can bind, activate, and inhibit CDK4; the fragment 30-132 can bind and activate but does not inhibit CDK4, while the fragment 30-88 cannot bind, activate, or inhibit but retains the LexA-mediated transactivation activity. 相似文献
19.