首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Highly virulent Newcastle disease virus (NDV) isolates are List A pathogens for commercial poultry, and reports of their isolation among member nations must be made to the Office of International Epizootes (OIE). The virus is classified as a member of the order Mononegavirales in the family Paramyxoviridae of the subfamily Paramyxovirinae. Two interactive surface glycoproteins, the fusion (F) and hemagglutinin-neuraminidase (HN) proteins, play essential roles in NDV attachment and fusion of cells during infection. Antibodies to the F or HN proteins are capable of virus neutralization; however, no full-length sequences are available for these genes from recently obtained virulent isolates. Therefore, nucleotide and predicted amino acid sequences of the F and HN protein genes from 16 NDV isolates representing highly virulent viruses from worldwide sources were obtained for comparison to older virulent isolates and vaccine strains. The F protein amino acid sequence was relatively conserved among isolates maintaining potential glycosylation sites and C residues for disulfide bonds. A dibasic amino acid motif was present at the cleavage site among more virulent isolates, while the low virulence viruses did not have this sequence. However, a Eurasian collared dove virus had a K114Q substitution at the F cleavage site unique among NDV isolates. The HN protein among NDV isolates maintained predicted catalytic and active site residues necessary for neuraminidase activity and hemagglutination. Length of the HN for the Eurasian collared dove isolate and a previously reported heat resistant virulent isolate were longer relative to other more recent virulent isolates. Phylogenetically NDV isolates separated into four groups with more recent virulent isolates forming a diverse branch, while all the avian paramyxoviruses formed their own clade distinct from other members of the Paramyxoviridae.  相似文献   

3.
Nipah virus (NiV) and Hendra virus (HeV) are novel paramyxoviruses from pigs and horses, respectively, that are responsible for fatal zoonotic infections of humans. The unique genetic and biological characteristics of these emerging agents has led to their classification as the prototypic members of a new genus within the Paramyxovirinae subfamily called HENIPAVIRUS: These viruses are most closely related to members of the genus Morbillivirus and infect cells through a pH-independent membrane fusion event mediated by the actions of their attachment (G) and fusion (F) glycoproteins. Understanding their cell biological features and exploring the functional characteristics of the NiV and HeV glycoproteins will help define important properties of these emerging viruses and may provide new insights into paramyxovirus membrane fusion mechanisms. Using a recombinant vaccinia virus system and a quantitative assay for fusion, we demonstrate NiV glycoprotein function and the same pattern of cellular tropism recently reported for HeV-mediated fusion, suggesting that NiV likely uses the same cellular receptor for infection. Fusion specificity was verified by inhibition with a specific antiserum or peptides derived from the alpha-helical heptads of NiV or HeV F. Like that of HeV, NiV-mediated fusion also requires both F and G. Finally, interactions between the glycoproteins of the paramyxoviruses have not been well defined, but here we show that the NiV and HeV glycoproteins are capable of highly efficient heterotypic functional activity with each other. However, no heterotypic activity was observed with envelope glycoproteins of the morbilliviruses Measles virus and Canine distemper virus.  相似文献   

4.
N-linked glycans not only orchestrate the folding and intracellular transport of viral glycoproteins but also modulate their function. We have characterized the three glycans attached to fusion (F) proteins of the morbilliviruses canine distemper virus and measles virus. The individual Morbillivirus glycans have similar functional properties: the glycan at position 68 is essential for protein transport, and those at positions 36 and 75 modulate fusion (numbering according to the Newcastle disease virus [NDV] F protein sequence). Based on the crystal structure of the NDV F protein, we then predicted the locations of the Morbillivirus glycans: the glycan at position 36 is located in the F protein head, and those at positions 68 and 75 are located near the neck-stalk interface. NDV position 36 is not occupied by a glycan; the only glycan in that F protein head also has a fusion control function and grows from residue 366, located only 6 A from residue 36. We then exchanged the glycan at position 36 with the glycan at position 366 and showed functional complementation. Thus, structural information about the F proteins of Paramyxoviridae coupled with functional analysis disclosed a location in the protein head into which fusion-modulating glycans independently evolved.  相似文献   

5.
新分离的副粘病毒Tianjin株的全基因组序列分析   总被引:2,自引:0,他引:2  
副粘病毒Tianjin株是一株对普通棉耳狨猴具有高致病性,并可能与人类下呼吸道感染密切相关的毒株.为了明确其基因结构、变异特点及种系进化地位,采用RT PCR、测序和拼接,获得了副粘病毒Tianjin株全基因组序列,与GenBank登录的副粘病毒科7个属和尚未分类的28株病毒及7株仙台病毒代表株,进行同源性比较及系统进化分析.结果表明,副粘病Tianjin株属于副粘病毒科、副粘病毒亚科、呼吸道病毒属,与仙台病毒关系最近.基因组全长及组成规律与仙台病毒相似,只是L基因末尾A15240C变异而使L蛋白增加了一个谷氨酸残基.副粘病毒Tianjin株存在440个独特的核苷酸变异位点,导致110个氨基酸残基的改变,系统进化上构成独立的分支.副粘病毒Tianjin株在基因组序列、宿主亲嗜性和致病性等方面与已知仙台病毒存在较大的差异,可能代表仙台病毒的一个新基因型.  相似文献   

6.
7.
The amino acid sequences of the NP,P, M, F,HN and L proteins of the paramyxovirus Tianjin strain were analyzed by using the bioinformatics methods. Phylogenetic analysis based on 6 structural proteins among the Tianjin strain and 25 paramyxoviruses showed that the Tianjin strain belonged to the genus Respirovirus, in the subfamily Paramyxovirinae, and was most closely related to Sendal virus (SeV). Phylogenetic analysis with 14 known SeVs showed that Tianjin strain represented a new evolutionary lineage. Similarities comparisons indicated that Tianjin strain P protein was poorly conserved, sharing only 78.7%-91.9% amino acid identity with the known SeVs, while the L protein was the most conserved, having 96.0%-98.0% amino acid identity with the known SeVs. Alignments of amino acid sequences of 6 structural proteins clearly showed that Tianjin strain possessed many unique amino acid substitutions in their protein sequences, 15 in NP, 29 in P, 6 in M, 13 in F, 18 in HN, and 29 in L. These results revealed that Tianjin strain was most likely a new genotype of SeV. The presence of unique amino acid substitutions suggests that Tianjin strain maybe has a significant difference in biological, pathological, immunological, or epidemiological characteristics from the known SeVs.  相似文献   

8.
Jack PJ  Boyle DB  Eaton BT  Wang LF 《Journal of virology》2005,79(16):10690-10700
J virus (J-V) was isolated from feral mice (Mus musculus) trapped in Queensland, Australia, during the early 1970s. Although studies undertaken at the time revealed that J-V was a new paramyxovirus, it remained unclassified beyond the family level. The complete genome sequence of J-V has now been determined, revealing a genome structure unique within the family Paramyxoviridae. At 18,954 nucleotides (nt), the J-V genome is the largest paramyxovirus genome sequenced to date, containing eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. The two genes located between the fusion (F) and attachment (G) protein genes, which have been named the small hydrophobic (SH) protein gene and the transmembrane (TM) protein gene, encode putative proteins of 69 and 258 amino acids, respectively. The 4,401-nt J-V G gene, much larger than other paramyxovirus attachment protein genes sequenced to date, encodes a putative attachment protein of 709 amino acids and distally contains a second open reading frame (ORF) of 2,115 nt, referred to as ORF-X. Taken together, these novel features represent the most significant divergence to date from the common six-gene genome structure of Paramyxovirinae. Although genome analysis has confirmed that J-V can be classified as a member of the subfamily Paramyxovirinae, it cannot be assigned to any of the five existing genera within this subfamily. Interestingly, a recently isolated paramyxovirus appears to be closely related to J-V, and preliminary phylogenetic analyses based on putative matrix protein sequences indicate that these two viruses will likely represent a new genus within the subfamily Paramyxovirinae.  相似文献   

9.
为了进一步明确副粘病毒Tianjin株的来源和种系进化地位,探讨其高致病性的机制.对Tianjin株NP、P、M及L蛋白进行了生物信息学分析.进化树显示:Tianjin株属于副粘病毒亚科呼吸道病毒属,且很可能为仙台病毒新的基因型.相似性比较表明,P蛋白变异最大.相似性仅为78.7%~91.9%;L蛋白相似性最高,为96.0%~98.0%.序列比对显示:NP蛋白氨基酸序列中存在15个独特的变异位点,P蛋白存在29个,M蛋白存在6个,L蛋白存在29个.这些独特变异位点的存在很可能是导致Tianjin株在宿主来源和致病特点等方面与已知仙台病毒株具有较大差异的原因.  相似文献   

10.
副粘病毒F蛋白的两段七肽重复序列(HR1和HR2)在病毒侵染细胞的过程中相互作用形成热稳定的富含α螺旋的异源二聚体,此结构的形成引起病毒囊膜与细胞膜的并置而最终导致膜融合的发生。腮腺炎病毒(Mumps virus, MuV)属于副粘病毒科,腮腺炎病毒属,可能利用与其他副粘病毒相似的侵染机制。本研究对MuV 融合蛋白的HR区进行了计算机程序预测,并利用大肠杆菌GST融合表达系统对MuV F蛋白HR1和HR2两段多肽进行了表达和纯化,通过GST pull_down 实验证实HR1和HR2多肽在体外能够相互作用,凝胶过滤层析证明HR1、HR2多肽能够形成多聚体,说明MuV F蛋白的HR区的相互作用可能是其发挥融合功能的关键因素。  相似文献   

11.
A new role of the Paramyxovirus accessory proteins has been uncovered. The P gene of the subfamily Paramyxovirinae encodes accessory proteins including the V and/or C protein by means of pseudotemplated nucleotide addition (RNA editing) or by overlapping open reading frame. The Respirovirus (Sendai virus and human parainfluenza virus (hPIV)3) and Rubulavirus (simian virus (SV)5, SV41, mumps virus and hPIV2) circumvent the interferon (IFN) response by inhibiting IFN signaling. The responsible genes were mapped to the C gene for SeV and the V gene for rubulaviruses. On the other hand, wild type measles viruses isolated from clinical specimens suppress production of IFN, although responsible viral factors remain to be identified. Both human and bovine respiratory syncytial viruses (RSVs) counteract the antiviral effect of IFN with inhibiting neither IFN signaling nor IFN production. Bovine RSV NS1 and NS2 proteins cooperatively antagonize the antiviral effect of IFN. Studies on the molecular mechanism by which viruses circumvent the host IFN response will not only illustrate co-evolution of virus strategies of immune evasion but also provide basic information useful for engineering novel antiviral drugs as well as recombinant live vaccine.  相似文献   

12.
Measles is still a major cause of mortality mainly in developing countries. The causative agent, measles virus (MeV), is an enveloped virus having a nonsegmented negative-sense RNA genome, and belongs to the genus Morbillivirus of the family Paramyxoviridae. One feature of the moribillivirus genomes is that the M and F genes have long untranslated regions (UTRs). The M and F mRNAs of MeV have 426-nucleotide-long 3' and 583-nucleotide-long 5' UTRs, respectively. Though these long UTRs occupy as much as approximately 6.4% of the virus genome, their function remains unknown. To elucidate the role of the long UTRs in the context of virus infection, we used the reverse genetics based on the virulent strain of MeV, and generated a series of recombinant viruses having alterations or deletions in the long UTRs. Our results showed that these long UTRs per se were not essential for MeV replication, but that they regulated MeV replication and cytopathogenicity by modulating the productions of the M and F proteins. The long 3' UTR of the M mRNA was shown to have the ability to increase the M protein production, promoting virus replication. On the other hand, the long 5' UTR of the F mRNA was found to possess the capacity to decrease the F protein production, inhibiting virus replication and yet greatly reducing cytopathogenicity. We speculate that the reduction in cytopathogenicity may be advantageous for MeV fitness and survival in nature.  相似文献   

13.
S Suzu  Y Sakai  T Shioda    H Shibuta 《Nucleic acids research》1987,15(7):2945-2958
By analysing complementary DNA clones constructed from genomic RNA of bovine parainfluenza 3 virus (BPIV3), we determined the nucleotide sequence of the region containing the entire F and HN genes. Their deduced amino acid sequences showed about 80% homologies with those of human parainfluenza 3 virus (HPIV3), about 45% with those of Sendai virus, and about 20% with those of SV5 and Newcastle disease virus (NDV), indicating, together with the results described in the preceding paper on the NP, P, C and M proteins of BPIV3, that BPIV3, HPIV3 and Sendai virus constitute a paramyxovirus subgroup, and that BPIV3 and HPIV3 are very closely related. The F and HN proteins of all these viruses, including SV5 and NDV, however, were shown to have protein-specific structures as well as short but well-conserved amino acid sequences, suggesting that these structures and sequences are related to the activities of these glycoproteins.  相似文献   

14.
Canine distemper virus (CDV), a member of the Morbillivirus genus that also includes measles virus, frequently causes neurologic complications, but the routes and timing of CDV invasion of the central nervous system (CNS) are poorly understood. To characterize these events, we cloned and sequenced the genome of a neurovirulent CDV (strain A75/17) and produced an infectious cDNA that expresses the green fluorescent protein. This virus fully retained its virulence in ferrets: the course and signs of disease were equivalent to those of the parental isolate. We observed CNS invasion through two distinct pathways: anterogradely via the olfactory nerve and hematogenously through the choroid plexus and cerebral blood vessels. CNS invasion only occurred after massive infection of the lymphatic system and spread to the epithelial cells throughout the body. While at early time points, mostly immune and endothelial cells were infected, the virus later spread to glial cells and neurons. Together, the results suggest similarities in the timing, target cells, and CNS invasion routes of CDV, members of the Morbillivirus genus, and even other neurovirulent paramyxoviruses like Nipah and mumps viruses.  相似文献   

15.
小反刍兽疫病毒属于副黏病毒科麻疹病毒属成员。本研究对我国首次分离的小反刍兽疫病毒株China/Ti-bet/07进行了全基因组序列测定及分子生物学特征分析。根据GenBank公布的小反刍兽疫病毒基因组序列设计引物通过RT-PCR扩增病毒基因组内部序列,通过3′和5′-RACE获得病毒基因组末端序列。序列测定与分析的结果表明,China/Tib/07株全长15948bp,预测编码6种结构蛋白和2种非结构蛋白,与已发表小反刍兽疫病毒基因组的长度和结构相似;在系统进化上与西南亚流行毒株有很高的同源性(91.6%~98.1%);与麻疹病毒属的其它成员相比,与牛瘟病毒的同源性最高(64.3%)。  相似文献   

16.
A paramyxovirus has been isolated from Atlantic salmon Salmo salar suffering from epitheliocystis. This virus does not cause any mortality when used to challenge disease-free salmon, but has been associated with 2 cases of mortality in salmon farms in Norway. Atlantic salmon paramyxovirus (ASPV) has been suggested as a name for the virus. The ASP virus is a slow-growing virus in cell cultures (rainbow trout gill cells: RTgill-W1). Little is known about its importance and its phylogenetic position is uncertain. Hence, the need for a fast and sensitive diagnostic method for studying the prevalence of this virus in salmon farms and for more basic knowledge about its identity were the motivation for this study. A partial nucleotide sequence (816 bp) from the large protein (L protein) gene of the ASP virus has been sequenced from 2 different isolates. The putative amino acid sequence has been compared with the L protein of other paramyxoviruses. This sequence gives strong support to a relationship between the ASP virus and members of the subfamily Paramyxovirinae, genus Respirovirus.  相似文献   

17.
小反刍兽疫病毒属于副黏病毒科麻疹病毒属,主要感染山羊、绵羊和野生小反刍兽,临床症状以发热、肺炎、腹泻及呼吸道和消化道黏膜炎症为主要特征。迄今为止对于小反刍兽疫无特效药物进行治疗,该病可对家畜养殖业造成一定的经济损失,因此对小反刍兽疫病毒病原学、结构和功能的研究已成为迫切需求。主要综述了小反刍兽疫病毒的六种结构蛋白N、P、M、F、HN、L和两种非结构蛋白C、V的基因组结构及功能,探讨了新型疫苗的研发方向,以期为小反刍兽疫病毒的深入研究、小反刍兽疫的临床防控提供参考。  相似文献   

18.
Molecular biology of Hendra and Nipah viruses   总被引:16,自引:0,他引:16  
The structure and genetic organization of Hendra and Nipah viruses places them in the subfamily Paramyxovirinae. However, low homology with other subfamily members and several novel biological and molecular features such as genome length and F(0 )cleavage site suggest classification in a new genus within the Paramyxovirinae.  相似文献   

19.
The nucleotide sequence of the gene encoding the matrix (M) protein of the Beaudette C strain of Newcastle disease virus (NDV) has been determined from overlapping cDNA clones. Control sequences typical of paramyxovirus mRNA start and polyadenylation signals have been identified. Assuming that the M gene starts and finishes at these sequences, the M gene is 1241 nucleotides long and encodes one long open reading frame of 364 amino acids, corresponding to a polypeptide of molecular weight 39605, in good agreement with estimates from SDS gels. The M protein has an amino acid sequence that is both hydrophobic and highly basic. The NDV M protein has sequence homologies to the M proteins of Sendai, measles, canine distemper and respiratory syncytial viruses.  相似文献   

20.
Structural features of paramyxovirus F protein required for fusion initiation   总被引:10,自引:0,他引:10  
On the basis of the coordinates of the related Newcastle disease virus (NDV) F protein, Valine-94, a determinant of measles virus (MV) cytopathicity, is predicted to lie in a cylindrical cavity with 10 A diameter located at the F neck. A 16-residue domain around V94 is functionally interchangeable between NDV and MV F, supporting our homology model. Features of the cavity are conserved within the Paramyxovirinae. A hydrophobic base and a hydrophilic residue at the rim are required for surface expression. Small residue substitutions predicted to open the cavity were found to disrupt transport or limit fusogenicity of transport-competent mutants but can be compensated for by simultaneous insertion of larger residues at the opposing wall. Variants containing histidine substitutions mediate fusion at pH 8.5, while at pH 7.2 fusion is blocked, suggesting that functionality requires low charge in the cavity. These results indicate that specific structural features of the cavity are essential for paramyxovirus fusion initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号