首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maximum specific growth rate of Streptococcus lactis and Streptococcus cremoris on synthetic medium containing glutamate but no glutamine decreases rapidly above pH 7. Growth of these organisms is extended to pH values in excess of 8 in the presence of glutamine. These results can be explained by the kinetic properties of glutamate and glutamine transport (B. Poolman, E. J. Smid, and W. N. Konings, J. Bacteriol. 169:2755-2761, 1987). At alkaline pH the rate of growth in the absence of glutamine is limited by the capacity to accumulate glutamate due to the decreased availability of glutamic acid, the transported species of the glutamate-glutamine transport system. Kinetic analysis of leucine and valine transport shows that the maximal rate of uptake of these amino acids by the branched-chain amino acid transport system is 10 times higher in S. lactis cells grown on synthetic medium containing amino acids than in cells grown in complex broth. For cells grown on synthetic medium, the maximal rate of transport exceeds by about 5 times the requirements at maximum specific growth rates for leucine, isoleucine, and valine (on the basis of the amino acid composition of the cell). The maximal rate of phenylalanine uptake by the aromatic amino acid transport system is in small excess of the requirement for this amino acid at maximum specific growth rates. Analysis of the internal amino acid pools of chemostat-grown cells indicates that passive influx of (some) aromatic amino acids may contribute to the net uptake at high dilution rates.  相似文献   

2.
In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 +/- 0.3 microM, independent of the extracellular pH. The KTS for glutamate uptake are 3.5, 11.2, 77, and 1200 microM at pH 4.0, 5.1, 6.0, and 7.0, respectively. Recalculation of the affinity constants based on the concentration of glutamic acid in the solution yield KTS of 1.8 +/- 0.5 microM independent of the external pH, indicating that the protonated form of glutamate, i.e., glutamic acid, and glutamine are the transported species. The maximal rates of glutamate and glutamine uptake are independent of the extracellular pH as long as the intracellular pH is kept constant, despite large differences in the magnitude and composition of the components of the proton motive force. Uptake of glutamate and glutamine requires the synthesis of ATP either from glycolysis or from arginine metabolism and appears to be essentially unidirectional. Cells are able to maintain glutamate concentration gradients exceeding 4 X 10(3) for several hours even in the absence of metabolic energy. The t1/2s of glutamate efflux are 2, 12, and greater than 30 h at pH 5.0, 6.0, and 7.0, respectively. After the addition of lactose as energy source, the rate of glutamine uptake and the level of ATP are both very sensitive to arsenate. When the intracellular pH is kept constant, both parameters decrease approximately in parallel (between 0.2 and 1.0 mM ATP) with increasing concentrations of the inhibitor. These results suggest that the accumulation of glutamate and glutamine is energized by ATP or an equivalent energy-rich phosphorylated intermediate and not by the the proton motive force.  相似文献   

3.
Streptococcus bovis JB1 cells energized with glucose transported glutamine at a rate of 7 nmol/mg of protein per min at a pH of 5.0 to 7.5; sodium had little effect on the transport rate. Because valinomycin-treated cells loaded with K and diluted into Na (pH 6.5) to create an artificial delta psi took up little glutamine, it appeared that transport was driven by phosphate-bond energy rather than proton motive force. The kinetics of glutamine transport by glucose-energized cells were biphasic, and it appeared that facilitated diffusion was also involved, particularly at high glutamine concentrations. Glucose-depleted cultures took up glutamine and produced ammonia, but the rate of transport per unit of glutamine (V/S) by nonenergized cells was at least 1,000-fold less than the V/S by glucose-energized cells. Glutamine was converted to pyroglutamate and ammonia by a pathway that did not involve a glutaminase reaction or glutamate production. No ammonia production from pyroglutamate was detected. S. bovis was unable to take up glutamate, but intracellular glutamate concentrations were as high as 7 mM. Glutamate was produced from ammonia via a glutamate dehydrogenase reaction. Cells contained high concentrations of 2-oxoglutarate and NADPH that inhibited glutamate deamination and favored glutamate formation. Since the carbon skeleton of glutamine was lost as pyroglutamate, glutamate formation occurred at the expense of glucose. Arginine deamination is often used as a taxonomic tool in classifying streptococci, and it had generally been assumed that other amino acids could not be fermented. To our knowledge, this is the first report of glutamine conversion to pyroglutamate and ammonia in streptococci.  相似文献   

4.
A model for transport of ammonia and ammonium ions across cell membranes is presented. The model suggests that ammonium ions compete with potassium ions for inward transport, over the cytoplasmic membrane, via potassium transport proteins like the Na+/K+-ATPase and the Na+K+2Cl-cotransporter. It also explains the difference between the ammonia/ammonium that is added to the cells and which is formed by the cells during metabolism of amino acids, especially glutamine and glutamate. The ammonium transport and subsequent events lead to predictable intracellular and extracellular pH (pHe) changes. Experiments which verified the model and the predicted consequences were performed by measurements of the pHe in concentrated cell suspensions. Addition of ammonium ions caused a time-dependent pHe increase which was inhibited by potassium ions. The test system is not per se specific for transport measurements but the effect of potassium ions on the pHe strongly favors our suggested model. Simple diffusion of ammonium ions would not be counteracted by potassium ions. The results show that ammonium ion transport in the murine myeloma cell line (Sp2/0-Ag14) used is inhibited by an excess of potassium ions. Results from experiments with specific inhibitors of suggested transport proteins were not conclusive. It is postulated that one important toxic effect of ammonia/ammonium is an increased demand for maintenance energy, caused by the need to maintain ion gradients over the cytoplasmic membrane. The results also suggest that potassium ions can be used to detoxify ammonia/ammonium in animal cell cultivations.  相似文献   

5.
Lactobacillus casei 393 cells which were energized with glucose (pH 6.0) took up glutamine, asparagine, glutamate, aspartate, leucine, and phenylalanine. Little or no uptake of several essential amino acids (valine, isoleucine, arginine, cysteine, tyrosine, and tryptophan) was observed. Inhibition studies indicated that there were at least five amino acid carriers, for glutamine, asparagine, glutamate/aspartate, phenylalanine, or branched-chain amino acids. Transport activities had pH optima between 5.5 and 6.0, but all amino acid carriers showed significant activity even at pH 4.0. Leucine and phenylalanine transport decreased markedly when the pH was increased to 7.5. Inhibitors which decreased proton motive force (delta p) nearly eliminated leucine and phenylalanine uptake, and studies with de-energized cells and membrane vesicles showed that an artificial electrical potential (delta psi) of at least -100 mV was needed for rapid uptake. An artificial delta p was unable to drive glutamine, asparagine, or glutamate uptake, and transport of these amino acids was sensitive to a decline in intracellular pH. When intracellular pH was greater than 7.7, glutamine, asparagine, or glutamate was transported rapidly even though the proton motive force had been abolished by inhibitors.  相似文献   

6.
This short review surveys the effects of extracellular potassium, released by neuronal activity, on the fluxes of ammonium, glutamate and glutamine in astrocytes. There is evidence that each of these fluxes is modulated by potassium-induced changes in astrocytic pH. The result is viewed as an integrated response to neuronal activity. The unusually high permeability of astrocyte cell membrane to ammonium ions, together with the normal transmembrane gradient of pH, enables astrocytes to accumulate ammonium appreciably. However, at loci of neuronal activity, effective ammonium ion permeability is diminished and the cytosol is alkalinized, resulting in a local decline in intracellular ammonium concentration. Intracellular potassium concentration rises at these same loci, creating the conditions for a 'potassium-ammonium countercurrent' in which ammonium ions migrate intracellularly towards sites of neuronal activity as potassium ions diffuse away.Physiologic elevations of extracellular potassium evoke a marked 'paradoxical' increase in the velocity of glutamate uptake in astrocytes. This increase correlates well with the extent of potassium-induced alkalinization. Further, recent evidence identifies a major transporter of glutamine in astrocytes (System N) as a glutamine/proton exchanger. Potassium can reverse the transmembrane gradient of protons in astrocytes, and increase intracellular glutamine concentration, creating the conditions for a reversal of glutamine flux via System N from uptake to export. These flux changes, evoked by potassium released from active neurons, combine to accelerate glutamate-glutamine cycling.  相似文献   

7.
Y Sato  S Noji  R Suzuki    S Taniguchi 《Journal of bacteriology》1989,171(9):4963-4966
An ATP-driven primary transport system operative for L-glutamate or L-aspartate in Streptococcus mutans is, through the entire pH range from 5.5 to 8.5, specifically stimulated by extracellular potassium ions. The stimulation by potassium ions observed in the low pH range between 5.5 and 7 has been interpreted to be due to potassium ion-dependent regulation of the intracellular pH (the first mechanism). In the high pH range from 7 to 8.5, on the other hand, the present study demonstrates that potassium stimulation is essentially not associated with such intracellular pH regulation. This conclusion is based on our observation that potassium stimulation in the high pH range is insensitive to a proton conductor, carbonyl cyanide-p-trifluoromethoxy-phenyl-hydrazone. Since none of the other monovalent cations, including sodium, rubidium, ammonium, and Tris ions, could replace potassium ions in significantly stimulating glutamate transport, it is most likely that the influx of potassium ions specifically cancels the membrane potential derived by movement of glutamate with the net negative charges across a membrane and thus facilitates transport (the second mechanism). The second mechanism appears to be operative even in a low pH range, in addition to the first mechanism.  相似文献   

8.
The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the presence of the probe. This results in a pH gradient, which drives accumulation of the probe in the cytoplasm. After neutralization the probe was well retained in cells stored on ice. BCECF-loaded cells were metabolically active, and were able to generate a pH gradient upon energization. The probe leaks out slowly at elevated temperatures. Efflux is stimulated upon energization of the cells, and is most likely catalyzed by an active transport system. It is a first-order process, and the rate constant could be deduced from the decrease of the fluorescence signal in periods of constant intracellular pH. This allowed a correction of the fluorescence signal for efflux of the probe. After calibration the cytoplasmic pH could be calculated from efflux-corrected fluorescence traces.  相似文献   

9.
We focused on the role of plasma membrane glutamate uptake in modulating the intracellular glutaminase (GA) and glutamate dehydrogenase (GDH) flux and in determining the fate of the intracellular glutamate in the proximal tubule-like LLC-PK(1)-F(+) cell line. We used high-affinity glutamate transport inhibitors D-aspartate (D-Asp) and DL-threo-beta-hydroxyaspartate (THA) to block extracellular uptake and then used [(15)N]glutamate or [2-(15)N]glutamine to follow the metabolic fate and distribution of glutamine and glutamate. In monolayers incubated with [2-(15)N]glutamine (99 atom %excess), glutamine and glutamate equilibrated throughout the intra- and extracellular compartments. In the presence of 5 mM D-Asp and 0.5 mM THA, glutamine distribution remained unchanged, but the intracellular glutamate enrichment decreased by 33% (P < 0.05) as the extracellular enrichment increased by 39% (P < 0.005). With glutamate uptake blocked, intracellular glutamate concentration decreased by 37% (P < 0.0001), in contrast to intracellular glutamine concentration, which remained unchanged. Both glutamine disappearance from the media and the estimated intracellular GA flux increased with the fall in the intracellular glutamate concentration. The labeled glutamate and NH formed from [2-(15)N]glutamine and recovered in the media increased 12- and 3-fold, respectively, consistent with accelerated GA and GDH flux. However, labeled alanine formation was reduced by 37%, indicating inhibition of transamination. Although both D-Asp and THA alone accelerated the GA and GDH flux, only THA inhibited transamination. These results are consistent with glutamate transport both regulating and being regulated by glutamine and glutamate metabolism in epithelial cells.  相似文献   

10.
Initial rates of glutamine uptake were studied in human lymphoid cell lines whose γ-glutamyl transpeptidase activities vary from 93 to 11,300 units/mg. In general, glutamine was transported at lower rates than other amino acids (met, phe, leu) in all cell lines studied. A cell line with very high transpeptidase activity exhibited an increased rate of glutamine uptake as compared to other amino acids, and a markedly decreased intracellular concentration of glutamine. In all cell lines transported glutamine was extensively (80%) converted to glutamate. Treatment of cells with 6-diazo-5-oxo-L-norleucine (DON) decreased transpeptidase and conversion of transported glutamine to glutamate by about 80%. Inhibition of glutamine transport was less pronounced (0–20%). The findings indicate that transported glutamine does not equilibrate with glutamine in the intracellular pool, but may enter a separate pool in which it is rapidly converted to glutamate.  相似文献   

11.
Glutamine's role as an energetic fuel has been extensively studied in the past using 14C- and 3H-labeled tracers in cultured human cells. Yet another prominent role of glutamine, that of a nitrogen shuttle, cannot be approached without an N-tracer. We therefore used 15N-labeled glutamine and glutamate to address the following questions: (1) is it possible to study the exchangeable pools of intracellular free glutamine and glutamate nitrogen with stable isotope methods? and (2) to what extent is intracellular glutamine pool regulated by extracellular glutamine? We observed that: (1) intracellular [15N]-glutamine enrichment reached a plateau at 80% within 20 min of incubation in a buffer containing 0.7 mM pure 15N-glutamine and no glutamate; in contrast, intracellular 15N-glutamate enrichment rose only to 40% after 4 hours of incubation in a buffer containing 0.5 mM pure 15N-glutamate and no glutamine; (2) the cell-free glutamine content was tightly dependent on extracellular glutamine level, while the cell-free glutamate remained steady irrespective of the extracellular glutamate level; (3) the cells took up glutamine and glutamate against a concentration gradient; the rate of glutamine uptake accounted for 90% of the cell glutamine turnover rate; and (4) when cells were confronted with a glutamine-free medium, only one fourth of intracellular glutamine was derived from the exchangeable glutamate. We conclude that: (1) The size and turnover rate of the intracellular pool of free glutamine nitrogen are measurable using stable isotope methodology; (2) glutamine uptake from the extracellular medium accounts for most of glutamine turnover rate in cultured fibroblasts; and (3) intracellular free glutamate is divided up between several pools in cultured human fibroblasts.  相似文献   

12.
Here we report and validate a simple method for measuring intracellular activities of glial glutamine synthetase (GS) and glutaminase (GLNase) in intact glial cells. These enzymes are responsible for glutamate and glutamine recycling in the brain, where glutamate and glutamine transport from the blood stream is strongly limited by the blood-brain barrier. The intracellular levels of glutamate and glutamine are dependent on activities of numerous enzymatic processes, including 1) cytosolic production of glutamine from glutamate by GS, 2) production of glutamate from glutamine by GLNase that is primarily localized between mitochondrial membranes, and 3) mitochondrial conversion of glutamate to the tricarboxylic cycle intermediate α-ketoglutarate in the reactions of oxidative deamination and transamination. We measured intracellular activities of GS and GLNase by quantifying enzymatic interconversions of L-[(3)H]glutamate and L-[(3)H]glutamine in cultured rat astrocytes. The intracellular substrate and the products of enzymatic reactions were separated in one step using commercially available anion exchange columns and quantified using a scintillation counter. The involvement of GS and GLNase in the conversion of (3)H-labeled substrates was verified using irreversible pharmacological inhibitors for each of the enzymes and additionally validated by measuring intracellular amino acid levels using an HPLC. Overall, this paper describes optimized conditions and pharmacological controls for measuring GS and GLNase activities in intact glial cells.  相似文献   

13.
Abstract: A shift in pH from 7.4 to 7.8 in the incubation solution caused a 3.4-fold increase in the free glutamine content of mouse cerebral astrocytes that were incubated with glutamate (100 μ M ) and ammonium (100 μ M ). This large and reversible steady-state increase in glutamine content was accompanied by smaller transient increases in the following: (a) net formation of glutamine; (b) clearance of glutamate from the incubation solution; and (c) glutamate content. The content of glutamine was reduced markedly by omission of either glutamate or ammonium from the incubation solution, or by inhibition of glutamine synthetase activity with methionine sulfoximine. The rate at which glutamine was exported from the astrocytes was unaffected by the pH change. The effects of pH on the concentration of free ammonia or on glutamate uptake do not appear to mediate the increase in glutamine content. Uptake of exogenous glutamine was little affected by the pH change. Therefore, possible mediation of the effect by an increase in intracellular pH must be considered. The response to altered pH described here may provide a cellular basis for the increased level of brain glutamine observed in hyperammonemia.  相似文献   

14.
Glutamate exists in a vesicular as well as a cytoplasmic pool and is metabolically closely related to the tricarboxylic acid (TCA) cycle. Glutamate released during neuronal activity is most likely to a large extent accumulated by astrocytes surrounding the synapse. A compensatory flux from astrocytes to neurons of suitable precursors is obligatory as neurons are incapable of performing a net synthesis of glutamate from glucose. Glutamine appears to play a major role in this context. Employing cultured cerebellar granule cells, as a model system for glutamatergic neurons, details of the biosynthetic machinery have been investigated during depolarizing conditions inducing vesicular release. [U-13C]Glucose and [U-13C]glutamine were used as labeled precursors for monitoring metabolic pathways by nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) technologies. To characterize release mechanisms and influence of glutamate transporters on maintenance of homeostasis in the glutamatergic synapse, a quantification was performed by HPLC analysis of the amounts of glutamate and aspartate released in response to depolarization by potassium (55 mM) in the absence and presence of DL-threo-beta-benzyloxyaspartate (TBOA) and in response to L-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC), a substrate for the glutamate transporter. Based on labeling patterns of glutamate the biosynthesis of the intracellular pool of glutamate from glutamine was found to involve the TCA cycle to a considerable extent (approximately 50%). Due to the mitochondrial localization of PAG this is unlikely only to reflect amino acid exchange via the cytosolic aspartate aminotransferase reaction. The involvement of the TCA cycle was significantly lower in the synthesis of the released vesicular pool of glutamate. However, in the presence of TBOA, inhibiting glutamate uptake, the difference between the intracellular and the vesicular pool with regard to the extent of involvement of the TCA cycle in glutamate synthesis from glutamine was eliminated. Surprisingly, the intracellular pool of glutamate was decreased after repetitive release from the vesicular pool in the presence of TBOA indicating that neuronal reuptake of released glutamate is involved in the maintenance of the neurotransmitter pool and that 0.5 mM glutamine exogenously supplied is inadequate to sustain this pool.  相似文献   

15.
Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration.  相似文献   

16.
Abstract Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain in relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine ( N -trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration.  相似文献   

17.
Glutamine release from astrocytes is an essential part of the glutamate-glutamine cycle in the brain. Uptake of glutamine into cultured rat astrocytes occurs by at least four different routes. In agreement with earlier studies, a significant contribution of amino acid transport systems ASC, A, L, and N was detected. It has not been determined whether these systems are also involved in glutamine efflux or whether specific efflux transporters exist. We show here that ASCT2, a variant of transport system ASC, is strongly expressed in rat astroglia-rich primary cultures but not in neuron-rich primary cultures. The amino acid sequence of rat astroglial ASCT2 is 83% identical to that of mouse ASCT2. In Xenopus laevis oocytes expressing rat ASCT2, we observed high-affinity uptake of [U-14C]glutamine (Km = 70 microM) that was Na(+)-dependent, concentrative, and unaffected by membrane depolarization. When oocytes were preloaded with [U-14C]glutamine, no glutamine efflux was detected in the absence of extracellular amino acids. Neither lowering intracellular pH nor raising the temperature elicited efflux. However, addition of 0.1 mM unlabeled alanine, serine, cysteine, threonine, glutamine, or leucine to the extracellular solution resulted in a rapid release of glutamine from the ASCT2-expressing oocytes. Amino acids that are not recognized as substrates by ASCT2 were ineffective in this role. Extracellular glutamate stimulated glutamine release weakly at pH 7.5 but was more effective on lowering pH to 5.5, consistent with the pH dependence of ASCT2 affinity for glutamate. Our findings suggest a significant role of ASCT2 in glutamine efflux from astrocytes by obligatory exchange with extracellular amino acids. However, the relative contribution of this pathway to glutamine release from cells in vivo or in vitro remains to be determined.  相似文献   

18.
Transport and metabolism of glutamine has been investigated in human diploid fibroblasts, IMR-90. Glutamine was taken up via System ASC (Na+-dependent amino acid transport system especially reactive with short or polar side chain amino acids). In the routine culture medium the cells contained a large quantity of glutamate; its major source was shown to be glutamine in the medium. Previously we described a transport system that mediates the entrance of cystine in exchange for the exit of glutamate (Bannai, 1986). Since the cystine taken up is reduced to cysteine and the cysteine readily exits to the medium where it is oxidized to cystine, a cystine-cysteine cycle across the plasma membrane has been postulated. When the cells were cultured in glutamate/glutamine-free medium, intracellular glutamate decreased, depending on the amount of cystine in the medium; in the absence of cystine, glutamate decreased very slowly. When the cells were cultured in ordinary medium, glutamine in the medium decreased, and glutamate in the medium increased. Both changes were well correlated with cystine concentration in the medium. These results are consistent with the view that the intracellular glutamate, of which the source is glutamine in the medium, is released from the cells into the medium in order to take up cystine and thereby to rotate the cystine-cysteine cycle. In the routine culture one-third to one-half of the total consumption of glutamine seems to be used for the uptake of cystine.  相似文献   

19.
Mycelium of Agaricus bisporus took up methylamine (MA), glutamate, glutamine and arginine by high-affinity transport systems following Michaelis-Menten kinetics. The activities of these systems were influenced by the nitrogen source used for mycelial growth. Moreover, MA, glutamate and glutamine uptakes were derepressed by nitrogen starvation, whereas arginine uptake was repressed. The two ammonium-specific transport systems with different affinities and capacities were inhibited by NH(+)(4), with a K(i) of 3.7 microM for the high-velocity system. The K(m) values for glutamate, glutamine and arginine transport were 124, 151 and 32 microM, respectively. Inhibition of arginine uptake by lysine and histidine showed that they are competitive inhibitors. MA, glutamate and glutamine uptake was inversely proportional to the intracellular NH(+)(4) concentration. Moreover, increase of the intracellular NH(+)(4) level caused by PPT (DL-phosphinotricin) resulted in an immediate cessation of MA, glutamine and glutamate uptake. It seems that the intracellular NH(+)(4) concentration regulates its own influx by feedback-inhibition of the uptake system and probably also its efflux which becomes apparent when mycelium is grown on protein. Addition of extracellular NH(+)(4) did not inhibit glutamine uptake, suggesting that NH(+)(4) and glutamine are equally preferred nitrogen sources. The physiological importance of these uptake systems for the utilization of nitrogen compounds by A. bisporus is discussed.  相似文献   

20.
Uptake of phosphate by Streptococcus lactis ML3 proceeds in the absence of a proton motive force, but requires the synthesis of ATP by either arginine or lactose metabolism. The appearance of free Pi internally in arginine-metabolizing cells corresponded quantitatively with the disappearance of extracellular phosphate. Phosphate transport was essentially unidirectional, and phosphate concentration gradients of up to 10(5) could be established. Substrate specificity studies of the transport system indicated no preference for either mono- or divalent phosphate anion. The activity of the phosphate transport system was affected by the intracellular Pi concentration by a feedback inhibition mechanism. Uncouplers and ionophores which dissipate the pH gradient across the cytoplasmic membrane inhibited phosphate transport at acidic but not at alkaline pH values, indicating that transport activity is regulated by the internal proton concentration. Phosphate uptake driven by arginine metabolism increased with the intracellular pH with a pKa of 7.3. Differences in transport activity with arginine and lactose as energy sources are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号