首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The serpin family of serine proteinase inhibitors is a mechanistically unique class of naturally occurring proteinase inhibitors that trap target enzymes as stable covalent acyl-enzyme complexes. This mechanism appears to require both cleavage of the serpin reactive center loop (RCL) by the proteinase and a significant conformational change in the serpin structure involving rapid insertion of the RCL into the center of an existing beta-sheet, serpin beta-sheet A. The present study demonstrates that partitioning between inhibitor and substrate modes of reaction can be altered by varying either the rates of RCL insertion or deacylation using a library of serpin RCL mutants substituted in the critical P(14) hinge residue and three different proteinases. We further correlate the changes in partitioning with the actual rates of RCL insertion for several of the variants upon reaction with the different proteinases as determined by fluorescence spectroscopy of specific RCL-labeled inhibitor mutants. These data demonstrate that the serpin mechanism follows a branched pathway, and that the formation of a stable inhibited complex is dependent upon both the rate of the RCL conformational change and the rate of enzyme deacylation.  相似文献   

2.
The native form of serpins (serine protease inhibitors) is a metastable conformation, which converts into a more stable form upon complex formation with a target protease. It has been suggested that movement of helix-F (hF) and the following loop connecting to strand 3 of beta-sheet A (thFs3A) is critical for such conformational change. Despite many speculations inferred from analysis of the serpin structure itself, direct experimental evidence for the mobilization of hF/thFs3A during the inhibition process is lacking. To probe the mechanistic role of hF and thFs3A during protease inhibition, a disulfide bond was engineered in alpha(1)-antitrypsin, which would lock the displacement of thFs3A from beta-sheet A. We measured the inhibitory activity of each disulfide-locked mutant and its heat stability against loop-sheet polymerization. Presence of a disulfide between thFs3A and s5A but not between thFs3A and s3A caused loss of the inhibitory activity, suggesting that displacement of hF/thFs3A from strand 5A but not from strand 3A is required during the inhibition process. While showing little influence on the inhibitory activity, the disulfide between thFs3A and s3A retarded loop-sheet polymerization significantly. This successful protein engineering of alpha(1)-antitrypsin is expected to be of value in clinical applications. Based on our current studies, we propose that the reactive-site loop of a serpin glides through between s5A and thFs3A for the full insertion into beta-sheet A while a substantial portion of the interactions between hF and s3A is kept intact.  相似文献   

3.
alpha(1)-Antichymotrypsin is a member of the serine proteinase inhibitor, or serpin, family that typically forms very long-lived, enzymatically inactive 1:1 complexes (denoted E*I*) with its target proteinases. Serpins share a conserved tertiary structure, in which an exposed region of amino acid residues (called the reactive center loop or RCL) acts as bait for a target proteinase. Within E*I*, the two proteins are linked covalently as a result of nucleophilic attack by Ser(195) of the serine proteinase on the P1 residue within the RCL of the serpin. This species is formally similar to the acyl enzyme species normally seen as an intermediate in serpin proteinase catalysis. However, its subsequent hydrolysis is extremely slow as a result of structural changes within the enzyme leading to distortion of the active site. There is at present an ongoing debate concerning the structure of the E*I* complex; in particular, as to whether the enzyme, bound to P1, maintains its original position at the top of the serpin molecule or instead translocates across the entire length of the serpin, with concomitant insertion of RCL residues P1-P14 within beta-sheet A and a large separation of the enzyme and RCL residue P1'. We report time-resolved fluorescence energy transfer and rapid mixing/quench studies that support the former model. Our results indicate that the distance between residue P1' in alpha(1)-antichymotrypsin and the amino terminus of chymotrypsin actually decreases on conversion of the encounter complex E.I to E*I*. These results led us to formulate a comprehensive mechanism that accounted both for our results and for those of others supporting the two different E*I* structures. In this mechanism, partial insertion of the RCL, with no large perturbation of the P1' enzyme distance, is followed by covalent acyl enzyme formation. Full insertion can subsequently take place, in a reversible fashion, with the position of equilibrium between the partially and fully inserted complexes depending on the particular serpin-proteinase pair under consideration.  相似文献   

4.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serpin family of serine proteinase inhibitors. Serpins inhibit their target proteinases by an ester bond being formed between the active site serine of the proteinase and the P1 residue of the reactive centre loop (RCL) of the serpin, followed by insertion of the RCL into beta-sheet A of the serpin. Concomitantly, there are conformational changes in the flexible joint region lateral to beta-sheet A. We have now, by site-directed mutagenesis, mapped the epitope for a monoclonal antibody, which protects the inhibitory activity of PAI-1 against inactivation by a variety of agents acting on beta-sheet A and the flexible joint region. Curiously, the epitope is localized in alpha-helix C and the loop connecting alpha-helix I and beta-strand 5A, on the side of PAI-1 opposite to beta-sheet A and distantly from the flexible joint region. By a combination of site-directed mutagenesis and antibody protection against an inactivating organochemical ligand, we were able to identify a residue involved in conferring the antibody-induced conformational change from the epitope to the rest of the molecule. We have thus provided evidence for communication between secondary structural elements not previously known to interact in serpins.  相似文献   

5.
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) protein family, is unique among the serpins in its conformational lability. This lability allows spontaneous conversion of the active form to a more stable, latent conformation under physiological conditions. In other serpins, polymerization, rather than latency transition, is induced under pathological conditions or upon heat treatment. To identify specific factors promoting latency conversion in PAI-1, we mutated PAI-1 at various positions and compared the effects with those of equivalent mutations in alpha(1)-antitrypsin, the archetypal serpin. Mutations that improved interactions with the turn between helix F and the third strand of beta-sheet A (thFs3A) or the fifth strand of beta-sheet A (s5A), which are near the site of latency transition-associated insertion of the reactive center loop, retarded latency conversion but did not greatly increase structural stability. Mutations that decreased interactions with s2C facilitated conformational conversion, possibly by releasing the reactive center loop from beta-sheet C. Mutations of Thr93 that filled a hydrophobic surface pocket on s2A dramatically increased structural stability but had a negligible effect on the conformational transition. Our results suggest that the structural features controlling latency transition in PAI-1 are highly localized, whereas the conformational strain of the native forms of other inhibitory serpins is distributed throughout the molecule and induces polymerization.  相似文献   

6.
PAI-1 is a proteinase inhibitor, which plays a key role in the regulation of fibrinolysis. It belongs to the serpins, a family of proteins that behave either as proteinase inhibitors or proteinase substrates, both reactions involving limited proteolysis of the reactive center loop and insertion of part of this loop into beta-sheet A. Titration calorimetry shows that the inhibition of tissue-type plasminogen and pancreatic trypsin are exothermic reactions with DeltaH = -20.3, and -22.5 kcal.mol(-1), respectively. The Pseudomonas aeruginosa elastase-catalyzed reactive center loop cleavage and inactivation of the inhibitor is also exothermic (DeltaH = -38.9 kcal.mol(-1)). The bacterial elastase also hydrolyses peptide-bound PAI-1 in which acetyl-TVASSSTA, the octapeptide corresponding to the P(14)-P(7) sequence of the reactive center loop is inserted into beta-sheet A of the serpin with DeltaH = -4.0 kcal.mol(-1). In contrast, DeltaH = 0 for the spontaneous conversion of the metastable active PAI-1 molecule into its thermodynamically stable inactive (latent) conformer although this conversion also involves loop/sheet insertion. We conclude that the active to latent transition of PAI-1 is an entirely entropy-driven phenomenon.  相似文献   

7.
Patients homozygous for the Z mutant form of alpha1-proteinase inhibitor (alpha1-PI) have an increased risk for the development of liver disease because of the accumulation in hepatocytes of inclusion bodies containing linear polymers of mutant alpha1-PI. The most widely accepted model of polymerization proposes that a linear, head-to-tail polymer forms by sequential insertion of the reactive center loop (RCL) of one alpha1-PI monomer between the central strands of the A beta-sheet of an adjacent monomer. This model derives primarily from two observations: peptides that are homologous with the RCL insert into the A beta-sheet of alpha1-PI monomer and this insertion prevents alpha1-PI polymerization. Normal alpha1-PI monomer does not spontaneously polymerize; however, here we show that the disulfide-linked dimer of normal alpha1-PI spontaneously forms linear polymers in buffer. The monomers within this dimer are joined head-to-head. Thus, the arrangement of monomers in these polymers must be different from that predicted by the loop-A sheet model. Therefore, we propose a new model for alpha1-PI polymer. In addition, polymerization of disulfide-linked dimer is not inhibited by the presence of the peptide even though dimer appears to interact with the peptide. Thus, RCL insertion into A beta-sheets may not occur during polymerization of this dimer.  相似文献   

8.
Corticosteroid-binding globulin (CBG) is a serine proteinase inhibitor (serpin) family member that transports glucocorticoids in blood and regulates their access to target cells. The 1.9A crystal structure of rat CBG shows that its steroid-binding site resembles the thyroxin-binding site in the related serpin, thyroxin-binding globulin, and mutagenesis studies have confirmed the contributions of key residues that constitute the steroid-binding pocket. Unlike thyroxin-bound thyroxin-binding globulin, the cortisol-bound CBG displays an "active" serpin conformation with the proteinase-sensitive, reactive center loop (RCL) fully expelled from the regulatory beta-sheet A. Moreover, the CBG structure allows us to predict that complete insertion of the proteolytically cleaved RCL into the serpin fold occurs in concert with a displacement and unwinding of helix D that would disrupt the steroid-binding site. This allosteric coupling between RCL positioning and occupancy of the CBG steroid-binding site, which resembles the ligand (glycosamino-glycan)-dependent activation of the thrombin inhibitory serpins heparin cofactor II and anti-thrombin RCLs, ensures both optimal recognition of CBG by target proteinases and efficient release of steroid to sites of action.  相似文献   

9.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein family, which has a common tertiary structure consisting of three beta-sheets and several alpha-helices. Despite the similarity of its structure with those of other serpins, PAI-1 is unique in its conformational lability, which allows the conversion of the metastable active form to a more stable latent conformation under physiological conditions. For the conformational conversion to occur, the reactive center loop (RCL) of PAI-1 must be mobilized and inserted into the major beta-sheet, A sheet. In an effort to understand how the structural conversion is regulated in this conformationally labile serpin, we modulated the length of the RCL of PAI-1. We show that releasing the constraint on the RCL by extension of the loop facilitates a conformational transition of PAI-1 to a stable state. Biochemical data strongly suggest that the stabilization of the transformed conformation is owing to the insertion of the RCL into A beta-sheet, as in the known latent form. In contrast, reducing the loop length drastically retards the conformational change. The results clearly show that the constraint on the RCL is a factor that regulates the conformational transition of PAI-1.  相似文献   

10.
The molecular interactions driving reactive center loop (RCL) insertion are of considerable interest in gaining a better understanding of the serpin inhibitory mechanism. Previous studies have suggested that interactions in the proximal hinge/breach region may be critical determinants of RCL insertion in serpins. In this study, conformational and functional changes in plasminogen activator inhibitor-2 (PAI-2) following incubation with a panel of synthetic RCL peptides indicated that the P14 residue is critical for RCL insertion, and hence inhibitory activity, in PAI-2. Only RCL peptides with a P14 threonine were able to induce the stressed to relaxed transition and abolish inhibitory activity in PAI-2, indicating that RCL insertion into beta-sheet A of PAI-2 is dependent upon this residue. The recently solved crystal structure of relaxed PAI-2 (PAI-2.RCL peptide complex) allowed detailed analysis of molecular interactions involving P14 related to RCL insertion. Of most interest is the rearrangement of hydrogen bonding around the breach region that accompanies the stressed to relaxed transition, in particular the formation of a side chain hydrogen bond between the threonine at P14 and an adjacent tyrosine on strand 2 of beta-sheet B in relaxed PAI-2. Structural alignment of known serpin sequences showed that this pairing (or the equivalent serine/threonine pairing) is highly conserved ( approximately 87%) in inhibitory serpins and may represent a general structural basis for serpin inhibitory activity.  相似文献   

11.
The native serpin architecture is extremely sensitive to mutation and environmental factors. These factors induce the formation of a partially folded species that results in the production of inactive loop-sheet polymers. The deposition of these aggregates in tissue, results in diseases such as liver cirrhosis, thrombosis, angioedema and dementia. In this study, we characterize the kinetics and conformational changes of alpha(1)-antitrypsin polymerization at pH 4 using tryptophan fluorescence, circular dichroism, turbidity changes and thioflavin T binding. These biophysical techniques have demonstrated that polymerization begins with a reversible conformational change that results in partial loss of secondary structure and distortion at the top of beta-sheet A. This is followed by two bimolecular processes. First, protodimers are formed, which can be dissociated by changing the pH back to 8. Then, an irreversible conformational change occurs, resulting in the stabilization of the dimers with a concomitant increase in beta-sheet structure, allowing for subsequent polymer extension. Electron microscopy analysis of the polymers, coupled with the far-UV CD and thioflavin T properties of the pH 4 polymers suggest they do not form via the classical loop-beta-sheet A linkage. However, they more closely resemble those formed by the pathological variant M(malton). Taken together, these data describe a novel kinetic mechanism of serine proteinase inhibitor polymerization.  相似文献   

12.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in beta-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of alpha-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and alpha1-protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and beta-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop-sheet interactions in serpins.  相似文献   

13.
The serpinopathies are a group of inherited disorders that share as their molecular basis the misfolding and polymerization of serpins, an important class of protease inhibitors. Depending on the identity of the serpin, conditions arising from polymerization include emphysema, thrombosis, and dementia. The structure of serpin polymers is thus of considerable medical interest. Wild-type alpha(1)-antitrypsin will form polymers upon incubation at moderate temperatures and has been widely used as a model system for studying serpin polymerization. Using hydrogen/deuterium exchange and mass spectrometry, we have obtained molecular level structural information on the alpha(1)-antitrypsin polymer. We found that the flexible reactive center loop becomes strongly protected upon polymerization. We also found significant increases in protection in the center of beta-sheet A and in helix F. These results support a model in which linkage between serpins is achieved through insertion of the reactive center loop of one serpin into beta-sheet A of another. We have also examined the heat-induced conformational changes preceding polymerization. We found that polymerization is preceded by significant destabilization of beta-sheet C. On the basis of our results, we propose a mechanism for polymerization in which beta-strand 1C is displaced from the rest of beta-sheet C through a binary serpin/serpin interaction. Displacement of strand 1C triggers further conformational changes, including the opening of beta-sheet A, and allows for subsequent polymerization.  相似文献   

14.
Plasminogen activator inhibitor 1 (PAI-1) is the main inhibitor of plasminogen activators and plays an important role in many pathophysiological processes. Like other members of the serpin family, PAI-1 has a reactive center consisting of a mobile loop (RCL) with P1 and P1' residues acting as a "bait" for cognate protease. In contrast to the other serpins, PAI-1 loses activity by spontaneous conversion to an inactive latent form. This involves full insertion of the RCL into beta-sheet A. To search for molecular determinants that could be responsible for conversion of PAI-1 to the latent form, we studied the conformation of the RCL in active PAI-1 in solution. Intramolecular distance measurements by donor-donor energy migration and probe quenching methods reveal that the RCL is located much closer to the core of PAI-1 than has been suggested by the recently resolved X-ray structures of stable PAI-1 mutants. Disulfide bonds can be formed in double-cysteine mutants with substitutions at positions P11 or P13 of the RCL and neighboring residues in beta-sheet A. This suggests that the RCL may be preinserted up to residue P13 in active PAI-1, and possibly even to residue P11. We propose that the close proximity of the RCL to the protein core, and the ability of the loop to preinsert into beta-sheet A is a possible reason for PAI-1 being able to convert spontaneously to its latent form.  相似文献   

15.
The function of the serpins as proteinase inhibitors depends on their ability to insert the cleaved reactive centre loop as the fourth strand in the main A beta-sheet of the molecule upon proteolytic attack at the reactive centre, P1-P1'. This mechanism is vulnerable to mutations which result in inappropriate intra- or intermolecular loop insertion in the absence of cleavage. Intermolecular loop insertion is known as serpin polymerisation and results in a variety of diseases, most notably liver cirrhosis resulting from mutations of the prototypical serpin alpha1-antitrypsin. We present here the 2.6 A structure of a polymer of alpha1-antitrypsin cleaved six residues N-terminal to the reactive centre, P7-P6 (Phe352-Leu353). After self insertion of P14 to P7, intermolecular linkage is affected by insertion of the P6-P3 residues of one molecule into the partially occupied beta-sheet A of another. This results in an infinite, linear polymer which propagates in the crystal along a 2-fold screw axis. These findings provide a framework for understanding the uncleaved alpha1-antitrypsin polymer and fibrillar and amyloid deposition of proteins seen in other conformational diseases, with the ordered array of polymers in the crystal resulting from slow accretion of the cleaved serpin over the period of a year.  相似文献   

16.
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the stoichiometry of inhibition (SI) and limiting rate constant (k(lim)) of RCL insertion for reactions with beta-trypsin, tissue-type plasminogen activator (tPA), and urokinase. The somatomedin B domain of vitronectin (SMBD) did not affect SI for any proteinase or k(lim) for tPA but decreased the k(lim) for beta-trypsin. In contrast to SMBD, monoclonal antibodies MA-55F4C12 and MA-33H1F7, the epitopes of which are located at the opposite side of alphaHF, decreased k(lim) and increased SI for every enzyme. These effects were enhanced in the presence of SMBD. RCL insertion for beta-trypsin and tPA is limited by different subsequent steps of PAI-1 mechanism as follows: enzyme acylation and formation of a loop-displaced acyl complex (LDA), respectively. Stabilization of LDA through the disruption of the exosite interactions between PAI-1 and tPA induced an increase in the k(lim) but did not affect the SI. Thus it is unlikely that LDA contributes significantly to the outcome of the serpin reaction. These results demonstrate that the rate of RCL insertion is not necessarily correlated with SI and indicate that an intermediate, different from LDA, which forms during the late steps of PAI-1 mechanism, and could be stabilized by ligands specific to alphaHF, controls bifurcation between the inhibitory and the substrate pathways.  相似文献   

17.
Alpha(1)-antitrypsin functions as a "mousetrap" to inhibit its target proteinase, neutrophil elastase. The common severe Z deficiency variant (Glu(342)-->Lys) destabilizes the mousetrap to allow a sequential protein-protein interaction between the reactive-centre loop of one molecule and beta-sheet A of another. These loop-sheet polymers accumulate within hepatocytes to form inclusion bodies that are associated with juvenile cirrhosis and hepatocellular carcinoma. The lack of circulating protein predisposes the Z alpha(1)-antitrypsin homozygote to emphysema. Loop-sheet polymerization is now recognized to underlie deficiency variants of other members of the serine proteinase inhibitor (serpin) superfamily, i.e. antithrombin, C1 esterase inhibitor and alpha(1)-antichymotrypsin, which are associated with thrombosis, angio-oedema and emphysema respectively. Moreover, we have shown recently that the same process in a neuron-specific protein, neuroserpin, underlies a novel inclusion-body dementia, known as familial encephalopathy with neuroserpin inclusion bodies. Our understanding of the structural basis of polymerization has allowed the development of strategies to prevent the aberrant protein-protein interaction in vitro. This must now be achieved in vivo if we are to treat the associated clinical syndromes.  相似文献   

18.
The biologically active conformation of α1-antitrypsin (α1AT) and other serine protease inhibitors represents a metastable state, characterized by an exposed reactive center loop (RCL) that acts as bait for the target enzyme. The protein can also adopt an inactive “latent” conformation that has the RCL inserted as a central strand in β-sheet A. This latent form is thermodynamically more stable than the active conformation. Nonetheless, folding of α1AT consistently yields the active state. The reasons that the metastable form is kinetically preferred remain controversial. The current work demonstrates that a carefully orchestrated folding mechanism prevents RCL insertion into sheet A. Temporal changes in solvent accessibility during folding are monitored using pulsed oxidative labeling and mass spectrometry. The data obtained in this way complement recent hydrogen/deuterium exchange results. Those hydrogen/deuterium exchange measurements revealed that securing of the RCL by hydrogen bonding of the first β‐strand in sheet C is one factor that favors formation of the active conformation. The oxidative labeling data presented here reveal that this anchoring is preceded by the formation of hydrophobic contacts in a confined region of the protein. This partial collapse sequesters the RCL insertion site early on and is therefore instrumental in steering α1AT towards its active conformation. RCL anchoring by hydrogen bonding starts to contribute at a later stage. Together, these two factors ensure that formation of the active conformation is kinetically favored. This work demonstrates how the use of complementary labeling techniques can provide insights into the mechanisms of protracted folding reactions.  相似文献   

19.
The serine protease inhibitor (serpin), plasminogen activator inhibitor‐1 (PAI‐1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI‐1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI‐1, in which the solvent‐exposed reactive center loop (RCL) inserts into its central β‐sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13‐P5′) to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap‐like RCL‐insertion that occurs with a half‐life of 1–2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half‐life of ~5 and 25 min at the P5′ and P8 RCL positions, respectively. We hypothesize that the process detected at P5′ represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.  相似文献   

20.
Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (serpin) in which the reactive center loop (RCL) spontaneously inserts into a central beta-sheet, beta-sheet A, resulting in inactive inhibitor. Available x-ray crystallographic studies of PAI-1 in an active conformation relied on the use of stabilizing mutations. Recently it has become evident that these structural models do not adequately explain the behavior of wild-type PAI-1 (wtPAI-1) in solution. To probe the structure of native wtPAI-1, we used three conformationally sensitive ligands: the physiologic cofactor, vitronectin; a monoclonal antibody, 33B8, that binds preferentially to RCL-inserted forms of PAI-1; and RCL-mimicking peptides that insert into beta-sheet A. From patterns of interaction with wtPAI-1 and the stable mutant, 14-1B, we propose a model of the native conformation of wtPAI-1 in which the bottom of the central sheet is closed, whereas the top of the beta-sheet A is open to allow partial insertion of the RCL. Because the incorporation of RCL-mimicking peptides into wtPAI-1 is accelerated by vitronectin, we further propose that vitronectin alters the conformation of the RCL to allow increased accessibility to beta-sheet A, yielding a structural hypothesis that is contradictory to the current structural model of PAI-1 in solution and its interaction with vitronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号