首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Three different monoclonal antibodies raised against the O antigen-containing lipopolysaccharide (LPS I) of free-living cells were used in an immunocytochemical study to follow the fate of LPS I on the outer membrane of Rhizobium leguminosarum bv. viciae 248 during the nodulation of Vicia sativa subsp. nigra. After immunogold labeling, the LPS I epitopes were detected on the outer membrane of bacteria present in infection threads throughout the nodule. Epitopes were not detectable on bacteria released from the infection thread. The data show that the LPS I epitopes present on rhizobia in infection droplets disappear shortly before or during endocytosis of the bacteria into the host plant cell cytoplasm. The abruptness of the change suggests an active degradation or modification of LPS I epitopes rather than only a repression of their synthesis.  相似文献   

2.
3.
Legionella pneumophila is a facultative intracellular pathogen which readily grows in human and guinea pig macrophages and in peritoneal exudate macrophages from A/J mice. Macrophage cultures capable of supporting the growth of Legionella can be used to test the potency of biologically active substances suspected of modulating host mechanisms of resistance to infection. Accordingly, this model was used to evaluate the influence of delta-9-tetrahydro-cannabinol (THC) on macrophage resistance to infection with an intracellular pathogen. Pretreatment of the macrophages with THC in the concentration range of 2.5 micrograms/ml (8 microM) to 5.0 micrograms/ml (16 microM) had little if any effect on the ability of the macrophages to either ingest or support the replication of Legionella. However, THC treatment of cells following Legionella infection resulted in increased numbers of bacteria recoverable from the macrophage cultures. Stimulation of the macrophage cultures with the activating agent lipopolysaccharide (LPS) was effective in reducing the ability of Legionella to grow in the cells. However, treatment of the LPS activated macrophages with THC resulted in greater growth of the Legionella in the cultures, indicating that the drug abolished the LPS induced enhanced resistance. These results demonstrate that THC treatment of macrophages following infection rather than before infection with Legionella promotes the replication of the bacteria within the macrophages. In addition, drug treatment suppresses the growth restricting potential of macrophages activated by LPS.  相似文献   

4.
The interaction of LPS (endotoxin) with the CD14-TLR4 receptor complex modulates the host innate immune response. Several studies using partial structures of LPS have suggested that TLR4 determines the ligand specificity of this complex, and that CD14 indiscriminately serves to deliver the ligand to TLR4. This conclusion has been made despite observations that the response of TLR4(+/+),CD14(-/-) macrophages to LPS is very weak. To determine whether CD14 itself plays a role in specific ligand recognition, the influences of various partial structures of LPS on induction of the proinflammatory cytokine, TNF, by CD14(+/+) and CD14(-/-) macrophages were compared. These studies show that the ligand specificities of CD14(+/+) and CD14(-/-) macrophages are very different. When CD14 is present, the receptor complex shows exquisite specificity for smooth LPS, the major form expressed by Gram-negative bacteria; however, as increasing amounts of carbohydrate are removed from smooth LPS, the sensitivity of CD14(+/+) macrophages decreases as much as 500-fold. In contrast, CD14(-/-) macrophages are unable to distinguish between smooth LPS and its various partial structures. Furthermore, CD14(-/-) macrophages are 150,000-fold less sensitive than CD14(+/+) macrophages to smooth LPS. A similar ability to distinguish the differing LPS structures of various bacteria such as Bacteroides fragilis and Salmonella abortus are observed for CD14(+/+), but not CD14(-/-), macrophages. Thus, CD14(+/+), but not CD14(-/-), macrophages are highly sensitive to stimulation by natural forms of LPS and show the ability to distinguish between various LPS ligands, consistent with CD14 being a highly specific receptor.  相似文献   

5.
BACKGROUND: Lipopolysaccharide (LPS) comprises the outer cell wall of all gram-negative bacteria. It consists of an oligosaccharide core and lipid A. All LPS-induced biological responses are lipid A-dependent. Once released, LPS triggers a host systemic inflammatory response that leads to septic shock. Binding studies have helped to reveal some of the molecular interactions behind septic shock. Such studies have employed methods of labeling bacterial LPS with either radiochemicals or fluorescent dyes. Poor labeling of the LPS has resulted in the use of high concentrations of LPS in order to detect its binding. METHODS: In this study, we have devised a new methodology for labeling LPS, using hydrazide and galactose oxidase in order to oxidize galactose residues to aldehyde groups in the oligosaccharide core of the LPS. RESULTS: We have managed to generate a conjugate that is highly fluorescent (LPS-to-Alexa 488 labeling ratio of 1:5) and biologically active. CONCLUSIONS: For the first time, this probe has enabled us to detect LPS binding even at pg/ml concentrations. Using this methodology, any Alexa-hydrazide dye can be conjugated to LPS, providing us with novel probes for imaging studies.  相似文献   

6.
Porins of Salmonella minnesota, R595, were purified by anion exchange chromatography and subsequently isolated in their monomeric form by chromatofocusing. Two forms of porin could be isolated, both with an apparent molecular mass of 37,000, but of differing isoelectric points (pI 4.6 versus pI of 4.9). Porins with pI 4.9 did not contain any detectable LPS, but porins with pI 4.6 were found to contain trace amounts of LPS (1.3 x 10(-4) micrograms LPS/1 microgram porin) as measured using a highly sensitive limulus assay. Unlike the LPS-associated porins the monomeric porins were biologically inert with regard to pore formation, but they were still able to bind C1q, a subcomponent of the first component of complement.  相似文献   

7.
侵入宿主后,细菌生长、繁殖并与宿主相互作用,引发机体不同程度的病理变化。为抑制细菌致病过程,宿主免疫系统产生抗感染免疫应答,感染的发生和发展取决于细菌对机体的致病性与机体抗细菌免疫的相互抗争。在细菌所致感染性疾病的发生、发展过程中,细菌与宿主细胞的拮抗往往涉及程序性细胞死亡(programmed cell death, PCD)这一过程。新近发现Gasdermin家族成员Gasdermin D和Gasdermin E参与PCD过程,并在其中发挥重要作用,跟踪其研究进展将有助于应对细菌感染造成的威胁。  相似文献   

8.
9.
Cationic antimicrobial cationic peptides (CAMP) have been found in recent years to play a decisive role in hosts' defense against microbial infection. They have also been investigated as a new therapeutic tool, necessary in particular due to the increasing resistance of microbiological populations to antibiotics. The structural basis of the activity of CAMPs has only partly been elucidated and may comprise quite different mechanism at the site of the bacterial cell membranes or in their cytoplasm. Polymyxin B (PMB) is a CAMP which is effective in particular against Gram-negative bacteria and has been well studied with the aim to understand its interaction with the outer membrane or isolated membrane components such as lipopolysaccharide (LPS) and to define the mechanism by which the peptides kill bacteria or neutralize LPS. Since PMB resistance of bacteria is a long-known phenomenon and is attributed to structural changes in the LPS moiety of the respective bacteria, we have performed a thermodynamic and biophysical analysis to get insights into the mechanisms of various LPS/PMB interactions in comparison to LPS from sensitive strains. In isothermal titration calorimetric (ITC) experiments considerable differences of PMB binding to sensitive and resistant LPS were found. For sensitive LPS the endothermic enthalpy change in the gel phase of the hydrocarbon chains converts into an exothermic reaction in the liquid crystalline phase. In contrast, for resistant LPS the binding enthalpy change remains endothermic in both phases. As infrared data show, these differences can be explained by steric changes in the headgroup region of the respective LPS.  相似文献   

10.
Lipopolysaccharides (LPS) are a main constituent of the outer membrane of Gram-negative bacteria. Salmonella enterica, like many other bacterial species, are able to chemically modify the structure of their LPS molecules through the PhoPQ pathway as a defense mechanism against the host immune response. These modifications make the outer membrane more resistant to antimicrobial peptides (AMPs), large lipophilic drugs, and cation depletion, and are crucial for survival within a host organism. It is believed that these LPS modifications prevent the penetration of large molecules and AMPs through a strengthening of lateral interactions between neighboring LPS molecules. Here, we performed a series of long-timescale molecular dynamics simulations to study how each of three key S. enterica lipid A modifications affect bilayer properties, with a focus on membrane structural characteristics, lateral interactions, and the divalent cation bridging network. Our results discern the unique impact each modification has on strengthening the bacterial outer membrane through effects such as increased hydrogen bonding and tighter lipid packing. Additionally, one of the modifications studied shifts Ca2+ from the lipid A region, replacing it as a major cross-linking agent between adjacent lipids and potentially making bacteria less susceptible to AMPs that competitively displace cations from the membrane surface. These results further improve our understanding of outer membrane chemical properties and help elucidate how outer membrane modification systems, such as PhoPQ in S. enterica, are able to alter bacterial virulence.  相似文献   

11.
Bacteria belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.  相似文献   

12.
An individual-based model (IbM) for bacterial adaptation and evolution, COSMIC-Rules, has been employed to simulate interactions of virtual temperate bacteriophages (phages) and their bacterial hosts. Outcomes of infection mimic those of a phage such as lambda, which can enter either the lytic or lysogenic cycle, depending on the nutritional status of the host. Infection of different hosts possessing differing restriction and modification systems is also simulated. Phages restricted upon infection of one restricting host can be adapted (by host-controlled modification of the phage genome) and subsequently propagate with full efficiency on this host. However, such ability is lost if the progeny phages are passaged through a new host with a different restriction and modification system before attempted re-infection of the original restrictive host. The simulations show that adaptation and re-adaptation to a particular host-controlled restriction and modification system result in lower efficiency and delayed lysis of bacterial cells compared with infection of non-restricting host bacteria.  相似文献   

13.
It has been known that ornithine decarboxylase (ODC) induced by the binding of c-Myc to odc gene is closely linked to cell death. Here, we investigated the relationship between their expressions and cell death in macrophage cells following treatment with Salmonella typhimurium or lipopolysaccharide (LPS). ODC expression was increased by bacteria or LPS and repressed by inhibitors against mitogen-activated protein kinases (MAPKs) in Toll-like receptor 4 (TLR4) signaling pathway. In contrast, c-Myc protein level was increased after treatment with bacteria, but not by treatment with LPS or heat-killed bacteria although both bacteria and LPS increased the levels of c-myc mRNA to a similar extent. c-Myc protein level is dependent upon bacterial invasion because treatment with cytochalasin D (CCD), inhibitors of endocytosis, decreased c-Myc protein level. The cell death induced by bacteria was significantly decreased after treatment of CCD or c-Myc inhibitor, indicating that cell death by S. typhimurium infection is related to c-Myc, but not ODC. Consistent with this conclusion, treatment with bacteria mutated to host invasion did not increase c-Myc protein level and cell death rate. Taken together, it is suggested that induction of c-Myc by live bacterial infection is directly related to host cell death.  相似文献   

14.
15.
Lee JH  Shin H  Ryu S 《Journal of virology》2012,86(6):3404-3405
Salmonella is one of the major pathogenic bacteria that cause food poisoning. To elucidate the host infection mechanism of Salmonella enterica serovar Typhimurium-targeting phages, the bacteriophage SPN3UB was isolated from a chicken fecal sample. This phage belongs morphologically to the Siphoviridae family and infects the host via the O antigen of lipopolysaccharide (LPS). To further understand its infection mechanism, we completely sequenced and analyzed the genome. Here, we announce its complete genome sequence and report major findings from the genomic analysis results.  相似文献   

16.
Deacylation of purified lipopolysaccharides (LPS) markedly reduces its toxicity toward mammals. However, the biological significance of LPS deacylation during infection of the mammalian host is uncertain, particularly because the ability of acyloxyacyl hydrolase, the leukocyte enzyme that deacylates purified LPS, to attack LPS residing in the bacterial cell envelope has not been established. We recently showed that the cellular and extracellular components of a rabbit sterile inflammatory exudate are capable of extensive and selective removal of secondary acyl chains from purified LPS. We now report that LPS as a constituent of the bacterial envelope is also subject to deacylation in the same inflammatory setting. Using Escherichia coli LCD25, a strain that exclusively incorporates radiolabeled acetate into fatty acids, we quantitated LPS deacylation as the loss of radiolabeled secondary (laurate and myristate) and primary fatty acids (3-hydroxymyristate) from the LPS backbone. Isolated mononuclear cells and neutrophils removed 50% and 20-30%, respectively, of the secondary acyl chains of the LPS of ingested whole bacteria. When bacteria were killed extracellularly during incubation with ascitic fluid, no LPS deacylation occurred. In this setting, the addition of neutrophils had no effect, but addition of mononuclear cells resulted in removal of >40% of the secondary acyl chains by 20 h. Deacylation of LPS was always restricted to the secondary acyl chains. Thus, in an inflammatory exudate, primarily in mononuclear phagocytes, the LPS in whole bacteria undergoes substantial and selective acyloxyacyl hydrolase-like deacylation, both after phagocytosis of intact bacteria and after uptake of LPS shed from extracellularly killed bacteria. This study demonstrates for the first time that the destruction of Gram-negative bacteria by a mammalian host is not restricted to degradation of phospholipids, protein, and RNA, but also includes extensive deacylation of the envelope LPS.  相似文献   

17.
18.
Legionella pneumophila isolated in guinea pigs from human lung tissues was highly virulent as determined by its infectivity and lethality in guinea pigs. Repeated passages of the bacteria on agar media resulted in the loss of virulence in guinea pigs. Virulence, however, was restored by cultivating the avirulent bacteria in cell cultures of human embryonic lung fibroblasts. Death of the host animals was the result of infection; no lethal toxin was detected in the cultural filtrate. These findings indicate that the virulent form ofL. pneumophilia is capable of surviving inside the host cells either through its endogenous resistance to environmental factors within the host cells or by host cell selection. Intracellular multiplication of the virulent bacteria followed by destruction of host cells appears to be an important pathogenic mechanism of Legionnaires' disease.  相似文献   

19.
Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity   总被引:6,自引:0,他引:6  
Positional cloning work and subsequent biochemical analyses have revealed that Toll-like receptor 4 (Tlr4) transduces the lipopolysaccharide (LPS) signal, alerting the host to infection by Gram-negative bacteria. Moreover, it appears that the LPS sensing pathway is a solitary one: disruption of Tlr4 causes complete unresponsiveness to LPS. As several Tlr family members exist in vertebrates, it appears likely that the innate immune system defends the host by recognizing a small number of structurally conserved molecules that distinguish the microbial world from tissues of the host.  相似文献   

20.
During lateral root base nodulation, the microsymbiont Azorhizobium caulinodans enters its host plant, Sesbania rostrata, via the formation of outer cortical infection pockets, a process that is characterized by a massive production of H(2)O(2). Infection threads guide bacteria from infection pockets towards nodule primordia. Previously, two mutants were constructed that produce lipopolysaccharides (LPSs) similar to one another but different from the wild-type LPS, and that are affected in extracellular polysaccharide (EPS) production. Mutant ORS571-X15 was blocked at the infection pocket stage and unable to produce EPS. The other mutant, ORS571-oac2, was impaired in the release from infection threads and was surrounded by a thin layer of EPS in comparison to the wild-type strain that produced massive amounts of EPS. Structural characterization revealed that EPS purified from cultured and nodule bacteria was a linear homopolysaccharide of alpha-1,3-linked 4,6-O-(1-carboxyethylidene)-D-galactosyl residues. In situ H(2)O(2) localization demonstrated that increased EPS production during early stages of invasion prevented the incorporation of H(2)O(2) inside the bacteria, suggesting a role for EPS in protecting the microsymbiont against H(2)O(2). In addition, ex planta assays confirmed a positive correlation between increased EPS production and enhanced protection against H(2)O(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号