首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Roots of grasses in response to iron deficiency markedly increase the release of chelating substances (`phytosiderophores') which are highly effective in solubilization of sparingly soluble inorganic FeIII compounds by formation of FeIIIphytosiderophores. In barley (Hordeum vulgare L.), the rate of iron uptake from FeIIIphytosiderophores is 100 to 1000 times faster than the rate from synthetic Fe chelates (e.g. Fe ethylenediaminetetraacetate) or microbial Fe siderophores (e.g. ferrichrome). Reduction of FeIII is not involved in the preferential iron uptake from FeIIIphytosiderophores by barley. This is indicated by experiments with varied pH, addition of bicarbonate or of a strong chelator for FeII (e.g. batho-phenanthrolinedisulfonate). The results indicate the existence of a specific uptake system for FeIIIphytosiderophores in roots of barley and all other graminaceous species. In contrast to grasses, cucumber plants (Cucumis sativus L.) take up iron from FeIIIphytosiderophores at rates similar to those from synthetic Fe chelates. Furthermore, under Fe deficiency in cucumber, increased rates of uptake of FeIIIphytosiderophores are based on the same mechanism as for synthetic Fe chelates, namely enhanced FeIII reduction and chelate splitting. Two strategies are evident from the experiments for the acquisition of iron by plants under iron deficiency. Strategy I (in most nongraminaceous species) is characterized by an inducible plasma membrane-bound reductase and enhancement of H+ release. Strategy II (in grasses) is characterized by enhanced release of phytosiderophores and by a highly specific uptake system for FeIIIphytosiderophores. Strategy II seems to have several ecological advantages over Strategy I such as solubilization of sparingly soluble inorganic FeIII compounds in the rhizosphere, and less inhibition by high pH. The principal differences in the two strategies have to be taken into account in screening methods for resistance to `lime chlorosis'.  相似文献   

2.
A species of Dechloromonas, strain UWNR4, was isolated from a nitrate-reducing, enrichment culture obtained from Wisconsin River (USA) sediments. This strain was characterized for anaerobic oxidation of both aqueous and chelated Fe(II) coupled to nitrate reduction at circumneutral pH. Dechloromonas sp. UWNR4 was incubated in anoxic batch reactors in a defined medium containing 4.5–5 mM NO3 ?, 6 mM Fe2+ and 1–1.8 mM acetate. Strain UWNR4 efficiently oxidized Fe2+ with 90 % oxidation of Fe2+ after 3 days of incubation. However, oxidation of Fe2+ resulted in Fe(III)-hydroxide-encrusted cells and loss of metabolic activity, suggested by inability of the cells to utilize further additions of acetate. In similar experiments with chelated iron (Fe(II)-EDTA), encrusted cells were not produced and further additions of acetate and Fe(II)-EDTA could be oxidized. Although members of the genus Dechloromonas are primarily known as perchlorate and nitrate reducers, our findings suggest that some species could be members of microbial communities influencing iron redox cycling in anoxic, freshwater sediments. Our work using Fe(II)-EDTA also demonstrates that Fe(II) oxidation was microbially catalyzed rather than a result of abiotic oxidation by biogenic NO2 ?.  相似文献   

3.
Summary Iron competitively inhibited Zn absorption by rice (Oryza sativa L. cv. Earlirose) grown in solution culture. The effect was more marked for shoots since Fe had also a competitive effect on Zn translocation from roots to shoots. The chelating agent baptholphenanthrolinesulfonate (BPDS), which has great ability to chelate Fe++, alleviated the inhibitory effect of Fe to a large extent. re]19750516  相似文献   

4.
Xuexian Li  Chunjian Li 《Plant and Soil》2004,261(1-2):147-153
Most dicotyledonous species respond to Fe deficiency by developing some mechanisms known as Fe-deficiency responses. The role of ethylene in regulation of root ferric reductase activity of wild-type tomato (Lycopersicon esculentum L.) and its mutant Never ripe (Nr), bean (Phaseolus vulgaris L., cv. Bifeng 80-30), and cucumber (Cucumis sativus L., cv. Xintaimici) plants grown in nutrient solution without Fe supply was studied under controlled condition. The results show that: (i) the tomato mutant Nr, which is insensitive to ethylene, presented rapid increase in root ferric reductase activity after omitting Fe from the nutrient solution; (ii) the initial time for increase in root ferric reductase activity was earlier than that in ethylene production after onset of Fe deficiency in the three species; (iii) like cobalt (3 μM Co2+), an inhibitor for ethylene production, high concentration of zinc (50 μM Zn2+) and copper (5 μM Cu2+) also suppressed the increase in root ferric reductase activity of Fe-starved plants; (iv) under Fe-sufficient conditions, indol-3-butylric acid (IBA) stimulated root ferric reductase activity of cucumber and bean plants, and this stimulating effect could not be suppressed by aminoethoxyvinylglycine (AVG, an inhibitor for ethylene synthesis). These results suggested that ethylene might not be directly involved in the regulation of root ferric reductase activity of Fe-deficient dicotyledonous species.  相似文献   

5.
The Fe chelate o,p-EDDHA/Fe3+, in addition to o,o-EDDHA/Fe3+, was found recently to be a component of commercial EDDHA/Fe3+ chelates. The European Regulation on fertilisers has included o,p-EDDHA as an authorized chelating agent. The efficacy of o,o-EDDHA/Fe3+, o,p-EDDHA/Fe3+ and EDTA/Fe3+ chelates as Fe sources in plant nutrition was studied. Iron-chelate reductase (FC-R) in young cucumber plants (Cucumis sativus L.) roots reduced o,p-EDDHA/Fe3+ faster than o,o-EDDHA/Fe3+, EDTA/Fe3+ and a commercial source of EDDHA/Fe3+. The o,p-EDDHA/Fe3+ chelate was also more effective than the o,o-EDDHA/Fe3+ in decreasing the severity of Fe-deficiency chlorosis in leaves of young soybean (Glycine max L.) plants grown hydroponically. The o,p-EDDHA ligand was more effective in the short-term than the EDTA and o,o-EDDHA ligands at dissolving Fe from selected Fe minerals and soils. However, the ultimate quantity of dissolve Fe was greatest with the o,o-EDDHA ligand.  相似文献   

6.
A solution culture experiment was conducted to determine the effects of different potassium concentrations on the chlorophyll fluorescence and oxidation resistance of the Fe2+-tolerant rice (Oryza sativa L.) genotype Xieyou 9308 and the Fe2+-sensitive genotype IIyou 838 exposed to 250 mg/L of Fe2+. The minimal fluorescence, maximum fluorescence efficiency, maximum fluorescence, and non-photochemical quenching coefficient showed no significant changes. However, the photochemical quenching coefficient increased. Under 200 mg/L K+ concentration, the effects of Fe2+ stress decreased. Compared with the control group, chlorophyll content and peroxidase, superoxide dismutase, and catalase activities decreased, whereas MDA content increased under Fe2+ stress. Exogenous K+ alleviated Fe2+ toxicity in the test subjects compared with the control group. Overall, external K+ could alleviate the toxic effects of Fe2+ toxicity.  相似文献   

7.
Iron deficiency in peanuts (Arachis hypogeae L.) caused an increase in release of caffeic acid, a higher rate of FeIII reduction, and increased rates of both FeIII chelate splitting and iron uptake.

Experiments on FeIII reduction by phenolics (in vitro experiments) and by roots of Fe-deficient peanuts exclude the direct involvement of released phenolics in FeIII reduction by roots: FeIII reduction by phenolics had a pH optimum higher than 8.0 and was strongly dependent on the concentration and the stability of the supplied FeIII chelates. In contrast, FeIII reduction by roots of Fe-deficient peanuts had a pH optimum of about 5.0 and was less dependent on the stability of the supplied FeIII chelates. Furthermore, the observed release of phenolics into nutrient solution would have to be at least 200 times higher to attain the reduction rates of roots of Fe-deficient peanuts. The results of these experiments support the idea of an enzymic reduction of FeIII on the plasmalemma of cortical cells of roots.

  相似文献   

8.
Various angiosperms differed in their monovinyl and divinyl protochlorophyllide biosynthetic capabilities during the dark and light phases of photoperiodic growth. Some plant species such as Cucumis sativus L., Brassica juncea (L.) Coss., Brassica kaber (DC.) Wheeler, and Portulaca oleracea L. accumulated mainly divinyl protochlorophyllide at night. Monocotyledonous species such as Avena sativa L., Hordeum vulgare L., Triticum secale L., Zea mays L., and some dicotyledonous species such as Phaseolus vulgaris L., Glycine max (L.) Merr., Chenopodium album L., and Lycopersicon esculentum L. accumulated mainly monovinyl protochlorophyllide at night.

Under low light intensities meant to simulate the first 60 to 80 minutes following daybreak divinyl protochlorophyllide appeared to contribute much more to chlorophyll formation than monovinyl protochlorophyllide in species such as Cucumis sativus L. Under the same light conditions, species which accumulated mainly monovinyl protochlorophyllide at night appeared to form chlorophyll preferably via monovinyl protochlorophyllide.

These results were interpreted in terms of: (a) a differential contribution of monovinyl and divinyl protochlorophyllide to chlorophyll formation at daybreak in various plant species; and (b) a differential regulation of the monovinyl and divinyl protochlorophyllide biosynthetic routes by light and darkness.

  相似文献   

9.
Quince (Cydonia oblonga Mill.), pear (Pyrus communis L.) and olive (Olea europaea L.) genotypes were evaluated for their tolerance to iron deficiency stress by growing young plants in three types of aerated nutrient solutions: (1) with iron, (2) without iron or (3) low in iron and with 10 mM bicarbonate. Plants were obtained either from rooted softwood cuttings or from germination of seeds. The degree of tolerance was evaluated with several indices: (1) the chlorophyll content, (2) the root Fe3+ reducing capacity and (3) the whole plant relative growth. Fifteen hours before Fe3+ reducing capacity determination, iron was applied to the roots of plants with iron-stress, since this method resulted in increasing the reductase activity. All quince and pear genotypes increased the root Fe3+ reducing capacity when grown in the treatments for iron-stress, in relation to control plants of the same genotypes. In olive cultivars, the Fe3+ reducing capacity was lower in the iron-stress treatments than in the control one. Studying the relationship between relative growth and chlorophyll content for each genotype under iron-stress, in relation to both indices in control plants, a classification of species and genotypes was established. According to that, most olive cultivars and some pear rootstocks and cultivars appear more iron-efficient than quince rootstocks. Our study shows that in some woody species, determining root Fe3+ reducing capacity is not the best method to establish tolerance to iron deficiency stress.  相似文献   

10.
Iron Uptake and Translocation by Macrocystis pyrifera   总被引:4,自引:0,他引:4       下载免费PDF全文
Manley SL 《Plant physiology》1981,68(4):914-918
Parameters of iron uptake have been determined for blade tissue of Macrocystis pyrifera (L.) C. Ag. These include the effects of iron concentration, light, various inhibitors, and blade type. All experiments were conducted in the defined artificial seawater Aquil. Iron uptake is light independent, energy dependent, and dependent on the reduction from Fe3+ to Fe2+. Iron is concentrated in the sieve tube exudate; exudate analysis revealed the presence of other micronutrients. Iron and other micronutrient translocation is discussed.  相似文献   

11.
While evaluating the impact of iron nanoparticles (NPs) on terrestrial plants we realized potential of root system of intact plants to form orange–brown complexes constituted of NPs around their roots and at bottom/side of tubes when exposed to FeCl3. These orange–brown complexes/plaques seen around roots were similar to that reported in wetland plants under iron toxicity. Transmission electron microscopy coupled with energy dispersive X-ray analysis revealed that orange–brown complexes/plaques, formed by root system of all 16 plant species from 11 distinct families tested, were constituted of NPs containing Fe. Selected area electron diffraction and powder X-ray diffraction spectra showed their amorphous nature. Thermogravimetric and fourier transform infra-red analysis showed that these Fe-NPs/nanocomplexes were composed of iron-oxyhydroxide. These plant species generated orange–brown Fe-NPs/nanocomplexes even under strict sterile conditions establishing inbuilt and independent potential of their root system to generate Fe-NPs. Root system of intact plants showed ferric chelate reductase activity responsible for reduction of Fe3+ to Fe2+. Reduction of potassium ferricyanide by root system of intact plants confirmed that root surface possess strong reducing strength, which could have played critical role in reduction of Fe3+ and formation of Fe-NPs/nanocomplexes. Atomic absorption spectrophotometric analysis revealed that majority of iron was retained in Fe-nanocomplexes/plaques, while only 2–3 % was transferred to shoots, indicating formation of nanocomplexes is a phytostabilization mechanism evolved by plants to restrict uptake of iron above threshold levels. We believe that formation of Fe-NPs/nanocomplexes is an ideal homeostasis mechanism evolved by plants to modulate uptake of desired levels of ionic Fe.  相似文献   

12.
The uptake and accumulation of iron in cucumber roots exposed to cadmium were investigated with Fe sufficient and deficient cucumber plants using Mössbauer spectroscopy, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and ferric chelate reductase activity measurements. Both Fe sufficient and Fe deficient plants were applied. In the case of Fe sufficient cucumber roots grown in nutrient solution with 10 μM Cd no changes were found in the occurrence of Fe species (mostly hydrous ferric oxides and ferric-carboxylate complexes) compared to the control where no Cd was added. In the Fe deficient roots pretreated with 0, 0.1, 1, 10 and 100 μM Cd for 3 h then supplied also with 0.5 mM 57Fe-citrate for 30 min, FeII was identified in a hexaaqua complex form. The relative amount of FeII was decreasing simultaneously with increasing Cd concentration, while the relative occurrence of FeIII species and total Fe concentration were increasing. The results support the inhibitory effect of Cd on Fe-chelate reduction. Although the reductase activity at 10 and 100 μM Cd treatment was lower than in the iron sufficient control plants, FeII could be identified by Mössbauer spectroscopy whereas in the Fe sufficient control, this form was below detection limit. These data demonstrate that the influx and the reoxidation of FeII was decreased by Cd, consequently, they refer to the competition of Cd2+ and Fe2+ during the membrane transport and the inhibition of the reoxidation process.  相似文献   

13.
Iron (Fe), an essential element for plant growth, is abundant in soil but with low bioavailability. Thus, plants developed specialized mechanisms to sequester the element. Beneficial microbes have recently become a favored method to promote plant growth through increased uptake of essential micronutrients, like Fe, yet little is known of their mechanisms of action. Functional mutants of the epiphytic bacterium Azospirillum brasilense, a prolific grass-root colonizer, were used to examine mechanisms for promoting iron uptake in Zea mays. Mutants included HM053, FP10, and ipdC, which have varying capacities for biological nitrogen fixation and production of the plant hormone auxin. Using radioactive iron-59 tracing and inductively coupled plasma mass spectrometry, we documented significant differences in host uptake of Fe2+/3+ correlating with mutant biological function. Radioactive carbon-11, administered to plants as 11CO2, provided insights into shifts in host usage of ‘new’ carbon resources in the presence of these beneficial microbes. Of the mutants examined, HM053 exhibited the greatest influence on host Fe uptake with increased plant allocation of 11C-resources to roots where they were transformed and exuded as 11C-acidic substrates to aid in Fe-chelation, and increased C-11 partitioning into citric acid, nicotianamine and histidine to aid in the in situ translocation of Fe once assimilated.Subject terms: Plant sciences, Applied microbiology  相似文献   

14.
Cohen CK  Garvin DF  Kochian LV 《Planta》2004,218(5):784-792
Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe2+ ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn2+ and Cd2+ into pea (Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063–1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe2+ in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity 59Fe2+ uptake system (K m =54–93 nM). Additionally, radiotracer (65Zn, 109Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx (K m of 4 and 100 M, for Zn2+ and Cd2+, respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe2+ transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may promote heavy metal uptake via increased expression of this transporter could have implications both for human nutrition and also for phytoremediation, the use of terrestrial plants to sequester toxic metals from contaminated soil.  相似文献   

15.
Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected.  相似文献   

16.
Kinetics of radioactive iron transport were examined in three strains of Bacillus megaterium. In strain ATCC 19213, which secretes the ferric-chelating secondary hydroxamic acid schizokinen, 59Fe3+ uptake from 59FeCl3 or the ferric hydroxamate Desferal-59Fe3+ was rapid and reached saturation within 3 min. In strain SK11, which does not secrete schizokinen, transport from 59FeCl3 was markedly reduced; the two ferric hydroxamates Desferal-59Fe3+ or schizokinen-59Fe3+ increased both total 59Fe3+ uptake and the 59Fe3+ appearing in a cellular trichloroacetic acid-insoluble fraction, although 10 min was required to reach saturation. Certain characteristics of transport from both ferric hydroxamates and FeCl3 suggest that iron uptake was an active process. The growth-inhibitory effect of aluminum on strain SK11 was probably due to the formation of nonutilizable iron-aluminum complexes which blocked uptake from 59FeCl3. Desferal or schizokinen prevented this blockage. A strain (ARD-1) resistant to the ferric hydroxamate antibiotic A22765 was isolated from strain SK11. Strain ARD-1 failed to grow with Desferal-Fe3+ as an iron source, and it was unable to incorporate 59Fe3+ from this source. Growth and iron uptake in strain ARD-1 were similar to strain SK11 with schizokinen-Fe3+ or the iron salt as sources. It is suggested that the ferric hydroxamates, or the iron they chelate, may be transported by a special system which might be selective for certain ferric hydroxamates. Strain ARD-1 may be unable to recognize both the antibiotic A22765 and the structurally similar chelate Desferal-Fe3+, while retaining its capacity to utilize schizokinen-Fe3+.  相似文献   

17.
Summary In a study involving twenty upland rice genotypes, the induction of iron chlorosis was found to be more by superphosphate application than due to lime incorporation into an alfisol soil under greenhouse conditions in GI tray-grown seedlings as quantified by two parameters viz., total chlorphyll content and Fe2+ content. Of the two indices of iron chlorosis, Fe2+ was more sensitive than chlorophyll content. Genotypes were grouped into efficient and inefficient categories both in terms of absorption and utilization of iron based on the degree of reduction in response to added superphosphate.  相似文献   

18.
Preparation and characterization of antisera against lettuce (Lactuca sativa L., cv. Grand Rapids) and pea (Pisum sativum L., cv. Alaska) phytochrome is described. These antisera, together with previously obtained antisera against zucchini (Cucurbita pepo L., cv. Black Beauty) and oat (Avena sativa L., cv. Garry) phytochrome, were used to compare by Ouchterlony double immunodiffusion phytochrome isolated from etiolated lettuce, pea, bean (Phaseolus vulgaris L., cv. Taylor Horticultural Bush), zucchini, oat and rye (Secale cereale L., cv. Balbo) seedlings. Cross reactivity between monocotyledonous phytochrome and antidicotyledonous-phytochrome serum and between dicotyledonous phytochrome and antimonocotyledonous-phytochrome serum was always weak or not perceptible by this assay. Among the four dicotyledonous phytochromes examined, pea and bean were the most similar immunochemically as anticipated. Pea and lettuce phytochrome somewhat unexpectedly also exhibited similar immunochemical reactivity. Zucchini phytochrome by contrast was immunochemically distinct from pea, bean, and lettuce phytochrome, although it did react with all three antidicotyledonous-phytochrome sera. Initial attempts to identify immunoglobulins that would recognize phytochrome regardless of its source indicated that they may exist. Such immunoglobulins are of interest because they might react with one or more determinants that could be part of an active site of phytochrome. These immunoglobulins, once isolated, could thus serve as a potential probe for the active site of phytochrome.  相似文献   

19.
Summary In a pot experiment with 26 calcareous soils, the critical limit of Fe in soils and plants was evaluated. DTPA-extractable Fe was found significanty correlated with Bray's per cent yield in rice. The Fe2+ (iron) in rice and lentil was also found significantly correlated with DTPA-extractable Fe as well as Bray's per cent yield showing thereby the superiority of Fe2+ (iron) in leaves over DTPA-extractable soil Fe to differentiate Fe responsive soils from non-responsive ones. The total Fe content in plant tissues does not seem correlated with the occurrence of Fe deficiency. The threshold values of DTPA-extractable soil Fe and Fe2+ (iron) in rice and lentil leaves were 6.95, 44 and 74.5 ppm, respectively below which appreciable responses to Fe application were observed. The optimum Fe level for these soils was found to be 10 ppm in which the dry matter yield response in all the 19 rice soils and 16 lentil soils ranged from 14.28 to 56.16 (Av. 25.75%) and 13.31 to 53.97 (Av. 22.47%), respectively.  相似文献   

20.
Tomato plants (Lycopersicum esculentum Mill.) were grown for 21-days in a complete hydroponic nutrient solution including Fe3+-ethylenediamine-di(o-hydroxyphenylacetate) and subsequently switched to nutrient solution withholding Fe for 8 days to induce Fe stress. The roots of Fe-stressed plants reduced chelated Fe at rates sevenfold higher than roots of plants grown under Fe-sufficient conditions. The response in intact Fe-deficient roots was localized to root hairs, which developed on secondary roots during the period of Fe stress. Plasma membranes (PM) isolated by aqueous two-phase partitioning from tomato roots grown under Fe stress exhibited a 94% increase in rates of NADH-dependent Fe3+-citrate reduction compared to PM isolated from roots of Fe-sufficient plants. Optimal detection of the reductase activity required the presence of detergent indicating structural latency. In contrast, NADPH-dependent Fe3+-citrate reduction was not significantly different in root PM isolated from Fe-deficient versus Fe-sufficient plants and proceeded at substantially lower rates than NADH-dependent reduction. Mg2+-ATPase activity was increased 22% in PM from roots of Fe-deficient plants compared to PM isolated from roots of Fe-sufficient plants. The results localized the increase in Fe reductase activity in roots grown under Fe stress to the PM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号