首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Aurora-B is a protein kinase required for chromosome segregation and the progression of cytokinesis during the cell cycle. We report here that Aurora-B phosphorylates GFAP and desmin in vitro, and this phosphorylation leads to a reduction in filament forming ability. The sites phosphorylated by Aurora-B; Thr-7/Ser-13/Ser-38 of GFAP, and Thr-16 of desmin are common with those related to Rho-associated kinase (Rho-kinase), which has been reported to phosphorylate GFAP and desmin at cleavage furrow during cytokinesis. We identified Ser-59 of desmin to be a specific site phosphorylated by Aurora-B in vitro. Use of an antibody that specifically recognized desmin phosphorylated at Ser-59 led to the finding that the site is also phosphorylated specifically at the cleavage furrow during cytokinesis in Saos-2 cells. Desmin mutants, in which in vitro phosphorylation sites by Aurora-B and/or Rho-kinase are changed to Ala or Gly, cause dramatic defects in filament separation between daughter cells in cytokinesis. The results presented here suggest the possibility that Aurora-B may regulate cleavage furrow-specific phosphorylation and segregation of type III IFs coordinatedly with Rho-kinase during cytokinesis.  相似文献   

2.
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at approximately 1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.  相似文献   

3.
To analyze the cell cycle-dependent desmin phosphorylation by Rho kinase, we developed antibodies specifically recognizing the kinase-dependent phosphorylation of desmin at Thr-16, Thr-75, and Thr-76. With these antibodies, phosphorylation of desmin was observed specifically at the cleavage furrow in late mitotic Saos-2 cells. We then found that treatment of the interphase cells with calyculin A revealed phosphorylation at all the three sites of desmin. We also found that an antibody, which specifically recognizes vimentin phosphorylated at Ser-71 by Rho kinase, became immunoreactive after calyculin A treatment. This calyculin A-induced interphase phosphorylation of vimentin at Ser-71 was blocked by Rho kinase inhibitor or by expression of the dominant-negative Rho kinase. Taken together, our results indicate that Rho kinase is activated not only in mitotic cells but also interphase ones, and phosphorylates intermediate filament proteins, although the apparent phosphorylation level is diminished to an undetectable level due to the constitutive action of type 1 protein phosphatase. The balance between intermediate filament protein phosphorylation by Rho kinase and dephosphorylation by type 1 protein phosphatase may affect the continuous exchange of intermediate filament subunits between a soluble pool and polymerized intermediate filaments.  相似文献   

4.
The autophosphorylation-dependent protein kinase has been identified as a potent vimentin kinase that incorporates 2 mol of phosphates per mol of protein and generates five major phosphorylation sites in vimentin. Tryptic phosphopeptide mapping by high-performance liquid chromatography followed by sequential manual Edman degradation and direct peptide sequence analysis revealed that Ser-25, Ser-38, Ser-65, and Ser-71 in the amino-terminal domain and Ser-411 in the carboxyl-terminal domain are the phosphorylation sites in vimentin phosphorylated by this kinase, indicating that autophosphorylation-dependent protein kinase is a potent and unique vimentin kinase. Functional study further revealed that phosphorylation of vimentin by autophosphorylation-dependent protein kinase can completely inhibit polymerization and assembly of the cytoskeletal intermediate filament as demonstrated by electron microscopic analysis. Taken together, the results provide initial evidence that the autophosphorylation-dependent protein kinase may function as a vimentin kinase involved in the structure-function regulation of the cytoskeletal system. The results also support the notion that this cyclic nucleotide- and calcium-independent protein kinase may function as a multisubstrate/multifunctional protein kinase involved in the regulation of diverse cell functions.  相似文献   

5.
The autophosphorylation-dependent protein kinase has been identified as a potent vimentin kinase that incorporates 2 mol of phosphates per mol of protein and generates five major phosphorylation sites in vimentin. Tryptic phosphopeptide mapping by high-performance liquid chromatography followed by sequential manual Edman degradation and direct peptide sequence analysis revealed that Ser-25, Ser-38, Ser-65, and Ser-71 in the amino-terminal domain and Ser-411 in the carboxyl-terminal domain are the phosphorylation sites in vimentin phosphorylated by this kinase, indicating that autophosphorylation-dependent protein kinase is a potent and unique vimentin kinase. Functional study further revealed that phosphorylation of vimentin by autophosphorylation-dependent protein kinase can completely inhibit polymerization and assembly of the cytoskeletal intermediate filament as demonstrated by electron microscopic analysis. Taken together, the results provide initial evidence that the autophosphorylation-dependent protein kinase may function as a vimentin kinase involved in the structure-function regulation of the cytoskeletal system. The results also support the notion that this cyclic nucleotide- and calcium-independent protein kinase may function as a multisubstrate/multifunctional protein kinase involved in the regulation of diverse cell functions.  相似文献   

6.
Intermediate filament (IF) networks can be regulated by phosphorylation of unit proteins, such as vimentin, by specific kinases leading to reorganization of the IF filamentous structure. Recently, we identified mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP kinase-2) as a vimentin kinase (Cheng and Lai [1998] J. Cell. Biochem. 71:169-181). Herein we describe the results of further in vitro studies investigating the effects of MAPKAP kinase-2 phosphorylation on vimentin and the effects of the phosphorylation on the filamentous structure. We show that MAPKAP kinase-2 mainly phosphorylates vimentin at Ser-38, Ser-50, Ser-55, and Ser-82, residues all located in the head domain of the protein. Surprisingly, and in stark contrast to phosphorylation by most other kinases, phosphorylation of vimentin by MAPKAP kinase-2 has no discernable effect on its assembly. It suggested that structure disassembly is not the only obligated consequence of phosphorylated vimentin as regulated by other kinases. Finally, a mutational analysis of each of the phosphorylated serine residues in vimentin suggested that no single serine site was primarily responsible for structure maintenance, implying that the retention of filamentous structure may be the result of the coordinated action of several phosphorylated serine sites. This also shed new lights on the functional task(s) of vimentin that is intermediate filament proteins might provide a phosphate reservoir to accommodate the phosphate surge without any structural changes.  相似文献   

7.
R M Evans 《FEBS letters》1988,234(1):73-78
The intermediate filament protein vimentin was phosphorylated with cAMP-dependent protein kinase under conditions that induce filament disassembly. Digestion of phosphorylated vimentin with lysine-specific endoprotease and subsequent tryptic peptide mapping indicated that a 12 kDa N-terminal fragment contained all the phosphorylation sites found in the intact molecule. Analysis of cyanogen bromide digests indicated that two phosphorylated peptides were produced, with the major 32P-labeled species representing amino acid position 14-72, and a minor 32P-labeled peptide representing amino acid positions 1-13. These results demonstrate that phosphorylation of sites within the N-terminal head domain of vimentin are associated with phosphorylation induced filament disassembly.  相似文献   

8.
There is ample in vitro evidence that phosphorylation of intermediate filaments, including keratins, plays an important role in filament reorganization. In order to gain a better understanding of the function of intermediate filament phosphorylation, we sought to identify the major phosphorylation site of human keratin polypeptide 18 (K18) and study its role in filament assembly or reorganization. We generated a series of K18 ser-->ala mutations at potential phosphorylation sites, followed by expression in insect cells and comparison of the tryptic 32PO4-labeled patterns of the generated constructs. Using this approach, coupled with Edman degradation of the 32PO4-labeled tryptic peptides, and comparison with tryptic peptides analyzed after labeling normal human colonic tissues, we identified ser-52 as the major K18 physiologic phosphorylation site. Ser-52 in K18 is not glycosylated and matches consensus sequences for phosphorylation by CAM kinase, S6 kinase and protein kinase C, and all these kinases can phosphorylate K18 in vitro predominantly at that site. Expression of K18 ser-52-->ala mutant in mammalian cells showed minimal phosphorylation but no distinguishable difference in filament assembly when compared with wild- type K18. In contrast, the ser-52 mutation played a clear but nonexclusive role in filament reorganization, based on analysis of filament alterations in cells treated with okadaic acid or arrested at the G2/M stage of the cell cycle. Our results show that ser-52 is the major physiologic phosphorylation site of human K18 in interphase cells, and that its phosphorylation may play an in vivo role in filament reorganization.  相似文献   

9.
Y H Chou  J R Bischoff  D Beach  R D Goldman 《Cell》1990,62(6):1063-1071
As cells enter mitosis, the intermediate filament (IF) networks of interphase BHK-21 cells are depolymerized to form cytoplasmic aggregates of disassembled IFs, and the constituent IF proteins, vimentin and desmin are hyperphosphorylated at several specific sites. We have characterized one of two endogenous vimentin kinases from a particulate fraction of mitotic cell lysates. Through several purification steps, vimentin kinase activity copurifies with histone H1 kinase and both activities bind to p13suc1-Sepharose. The final enriched kinase preparation consists primarily of p34cdc2 and polypeptides of 65 and 110 kd. The purified kinase complex phosphorylates vimentin in vitro at a subset of sites phosphorylated in vivo during mitosis. Furthermore, phosphorylation of in vitro polymerized vimentin IFs by the purified kinase causes their disassembly. Therefore, vimentin is a substrate of p34cdc2 and phosphorylation of vimentin contributes to M phase reorganization of the IF network.  相似文献   

10.
S Ando  K Tanabe  Y Gonda  C Sato  M Inagaki 《Biochemistry》1989,28(7):2974-2979
We reported that stoichiometric phosphorylation by either cAMP-dependent protein kinase or protein kinase C induces disassembly of vimentin filaments [Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., & Sato, C. (1987) Nature 328, 649-652; Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., & Sato, C. (1988) J. Biol. Chem. 263, 5970-5978]. In the present work, we attempted to identify the sites of vimentin phosphorylated by each protein kinase. Sequential analysis of the purified phosphopeptides, together with the known primary sequence, revealed that Ser-8, Ser-9, Ser-20, Ser-25, Ser-33, and Ser-41 were specifically phosphorylated by protein kinase C, whereas Ser-46 was phosphorylated preferentially by cAMP-dependent protein kinase. Both kinases reacted with Ser-6, Ser-24, Ser-38, Ser-50, and Ser-65. Specific phosphorylation sites for protein kinase C are mostly located close to the amino-terminal side of arginine while those for cAMP-dependent protein kinase are located close to the carboxyl-terminal side of arginine. The phosphorylation sites exclusively occur in the amino-terminal non-alpha-helical head domain, particularly at the beta-turn region. These results provide clues to the molecular mechanisms of phosphorylation-dependent disassembly of vimentin filaments.  相似文献   

11.
Phosphorylation and spatial reorganization of the vimentin network have been implicated in mediating smooth muscle contraction, cell migration, and mitosis. In this study, stimulation of cultured smooth muscle cells with 5-hydroxytryptamine (5-HT) induced PAK1 phosphorylation at Thr-423 (an indication of p21-activated kinase (PAK) activation). Treatment with PAK led to disassembly of wild-type (but not mutant S56A) vimentin filaments as assessed by an in vitro filament assembly assay. Furthermore, stimulation with 5-HT resulted in the dissociation of Crk-associated substrate (CAS; an adapter protein associated with smooth muscle force development) from cytoskeletal vimentin. Expression of mutant S56A vimentin in cells inhibited the increase in phosphorylation at Ser-56 and in the ratios of soluble to insoluble vimentin (an index of vimentin disassembly) and the dissociation of CAS from cytoskeletal vimentin in response to 5-HT activation compared with cells expressing wild-type vimentin. Because CAS may be involved in PAK activation, PAK phosphorylation was evaluated in cells expressing the S56A mutant. Expression of mutant S56A vimentin depressed PAK phosphorylation at Thr-423 induced by 5-HT. Expression of the S56A mutant also inhibited the spatial reorientation of vimentin filaments in cells in response to 5-HT stimulation. Our results suggest that vimentin phosphorylation at Ser-56 may inversely regulate PAK activation possibly via the increase in the amount of soluble CAS upon agonist stimulation of smooth muscle cells. Additionally, vimentin phosphorylation at this position is critical for vimentin filament spatial rearrangement elicited by agonists.  相似文献   

12.
Mitotic kinases regulate cell division and its checkpoints, errors of which can lead to aneuploidy or genetic instability. One of these is Aurora-B, a key kinase that is required for chromosome alignment at the metaphase plate and for cytokinesis in mammalian cells. We report here that human Aurora-B is phosphorylated at Thr-232 through interaction with the inner centromere protein (INCENP) in vivo. The phosphorylation of Thr-232 occurs by means of an autophosphorylation mechanism, which is indispensable for the Aurora-B kinase activity. The activation of Aurora-B spatio-temporally correlated with the site-specific phosphorylation of its physiological substrates, histone H3 and vimentin. Overexpression of the TA mutant of Aurora-B, in which Thr-232 was changed into alanine, frequently induced multinuclearity in cells. These results indicate that the phosphorylation of Thr-232 is an essential regulatory mechanism for Aurora-B activation.  相似文献   

13.
The phosphatase and tensin homologue (PTEN) tumor suppressor is a phosphatidylinositol D3-phosphatase that counteracts the effects of phosphatidylinositol 3-kinase and negatively regulates cell growth and survival. PTEN is itself regulated by phosphorylation on multiple serine and threonine residues in its C terminus. Previous work has implicated casein kinase 2 (CK2) as the kinase responsible for this phosphorylation. Here we showed that CK2 does not phosphorylate all sites in PTEN and that glycogen synthase kinase 3beta (GSK3beta) also participates in PTEN phosphorylation. Although CK2 mainly phosphorylated PTEN at Ser-370 and Ser-385, GSK3beta phosphorylated Ser-362 and Thr-366. More importantly, prior phosphorylation of PTEN at Ser-370 by CK2 strongly increased its phosphorylation at Thr-366 by GSK3beta, suggesting that the two may synergize. Using RNA interference, we showed that GSK3 phosphorylates PTEN in intact cells. Finally, PTEN phosphorylation was affected by insulin-like growth factor in intact cells. We concluded that multiple kinases, including CK2 and GSK3beta, participate in PTEN phosphorylation and that GSK3beta may provide feedback regulation of PTEN.  相似文献   

14.
We reported that phosphorylation by either cAMP-dependent protein kinase or protein kinase C (Ca2+/phospholipid-dependent enzyme) in vitro induces disassembly of the desmin filaments (Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., and Sato, C. (1988) J. Biol. Chem. 263, 5970-5978). For this subunit protein, Ser-29, Ser-35, and Ser-50 within the non-alpha-helical head domain were shown to be the sites of phosphorylation for cAMP-dependent protein kinase (Geisler, N., and Weber, K. (1988) EMBO J. 7, 15-20). In the present work, we identified the sites of desmin phosphorylated in vitro by other protein kinase which affects the filament structure. The protein kinase C-phosphorylated desmin was hydrolyzed with trypsin, and the phosphorylated peptides were isolated by reverse-phase chromatography. Sequential analysis of the purified phosphopeptides, together with the known primary sequence, revealed that Ser-12, Ser-29, Ser-38, and Ser-56 were phosphorylated by protein kinase C. All four sites are located within the non-alpha-helical head domain of desmin. Ser-12, Ser-38, and Ser-56, specifically phosphorylated by protein kinase C, have arginine residues at the carboxyl-terminal side (Arg-14, Arg-42, and Arg-59, respectively). Ser-29 phosphorylated by both protein kinase C and cAMP-dependent protein kinase has arginine residues at the amino and carboxyl termini (Arg-27 and Arg-33). These findings support the view that the head domain-specific phosphorylation strongly influences desmin filament structure; however, each protein kinase differed with regard to site recognition on this domain.  相似文献   

15.
These studies describe a cytoskeletal-associated protein kinase activity in astrocytes that phosphorylated the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin and that appeared to be distinct from protein kinase C (PK-C) and the cyclic AMP-dependent protein kinase (PK-A). The cytoskeletal-associated kinase activity phosphorylated intermediate filament proteins in the presence of 10 mM MgCl2 and produced an even greater increase in 32P incorporation into these proteins in the presence of calcium/calmodulin. Tryptic peptide mapping of phosphorylated intermediate filament proteins showed that the intermediate filament protein kinase activity produced unique phosphopeptide maps, in both the presence and the absence of calcium/calmodulin, as compared to that of PK-C and PK-A, although there were some common sites of phosphorylation among the kinases. In addition, it was determined that the intermediate filament protein kinase activity phosphorylated both serine and threonine residues of the intermediate filament proteins, vimentin and GFAP. However, the relative proportion of serine and threonine residues phosphorylated varied depending on the presence or absence of calcium/calmodulin. The magnesium-dependent activity produced the highest proportion of threonine phosphorylation, suggesting that the calcium/calmodulin-dependent kinase activity acts mainly at serine residues. PK-A and PK-C phosphorylated mainly serine residues. Also, the intermediate filament protein kinase activity phosphorylated both the N-and the C-terminal domains of vimentin and the N-terminal domain of GFAP. In contrast, both PK-C and PK-A are known to phosphorylate the N-terminal domains of both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, regulates formation of stress fibers and focal adhesions, myosin fiber organization, and neurite retraction through the phosphorylation of cytoskeletal proteins, including myosin light chain, the ERM family proteins (ezrin, radixin, and moesin) and adducin. Rho-kinase was found to phosphorylate a type III intermediate filament (IF) protein, glial fibrillary acidic protein (GFAP), exclusively at the cleavage furrow during cytokinesis. In the present study, we examined the roles of Rho-kinase in cytokinesis, in particular organization of glial filaments during cytokinesis. Expression of the dominant-negative form of Rho-kinase inhibited the cytokinesis of Xenopus embryo and mammalian cells, the result being production of multinuclei. We then constructed a series of mutant GFAPs, where Rho-kinase phosphorylation sites were variously mutated, and expressed them in type III IF-negative cells. The mutations induced impaired segregation of glial filament (GFAP filament) into postmitotic daughter cells. As a result, an unusually long bridge-like cytoplasmic structure formed between the unseparated daughter cells. Alteration of other sites, including the cdc2 kinase phosphorylation site, led to no remarkable defect in glial filament separation. These results suggest that Rho-kinase is essential not only for actomyosin regulation but also for segregation of glial filaments into daughter cells which in turn ensures correct cytokinetic processes.  相似文献   

17.
Glial fibrillary acidic protein (GFAP), the intermediate filament component of astroglial cells, can serve as an excellent substrate for both cAMP-dependent protein kinase and protein kinase C, in vitro. GFAP phosphorylated by each protein kinase does not polymerize, and the filaments that do polymerize tend to depolymerize after phosphorylation. Dephosphorylation of phospho-GFAP by phosphatase led to a recovery of the polymerization competence of GFAP. Most of the phosphorylation sites for cAMP-dependent protein kinase and protein kinase C on GFAP are the same, Ser-8, Ser-13, and Ser-34. cAMP-dependent protein kinase has one additional phosphorylation site, Thr-7. All the sites are located within the amino-terminal non-alpha-helical head domain of GFAP. These observations pave the way for in vivo studies on organization of glial filaments.  相似文献   

18.
Phosphorylation of tau is regulated by PKN   总被引:5,自引:0,他引:5  
For the phosphorylation state of microtubule-associated protein, tau plays a pivotal role in regulating microtubule networks in neurons. Tau promotes the assembly and stabilization of microtubules. The potential for tau to bind to microtubules is down-regulated after local phosphorylation. When we investigated the effects of PKN activation on tau phosphorylation, we found that PKN triggers disruption of the microtubule array both in vitro and in vivo and predominantly phosphorylates tau in microtubule binding domains (MBDs). PKN has a catalytic domain highly homologous to protein kinase C (PKC), a kinase that phosphorylates Ser-313 (= Ser-324, the number used in this study) in MBDs. Thus, we identified the phosphorylation sites of PKN and PKC subtypes (PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -zeta, and -lambda) in MBDs. PKN phosphorylates Ser-258, Ser-320, and Ser-352, although all PKC subtypes phosphorylate Ser-258, Ser-293, Ser-324, and Ser-352. There is a PKN-specific phosphorylation site, Ser-320, in MBDs. HIA3, a novel phosphorylation-dependent antibody recognizing phosphorylated tau at Ser-320, showed immunoreactivity in Chinese hamster ovary cells expressing tau and the active form of PKN, but not in Chinese hamster ovary cells expressing tau and the inactive form of PKN. The immunoreactivity for phosphorylated tau at Ser-320 increased in the presence of a phosphatase inhibitor, FK506 treatment, which means that calcineurin (protein phosphatase 2B) may be involved in dephosphorylating tau at Ser-320 site. We also noted that PKN reduces the phosphorylation recognized by the phosphorylation-dependent antibodies AT8, AT180, and AT270 in vivo. Thus PKN serves as a regulator of microtubules by specific phosphorylation of tau, which leads to disruption of tubulin assembly.  相似文献   

19.
Cytokinesis, the final step of mitosis, is mediated by an actomyosin contractile ring, the formation of which is temporally and spatially regulated following anaphase onset. Aurora-B is a member of the chromosomal passenger complex, which regulates various processes during mitosis; it is not understood, however, how Aurora-B is involved in cytokinesis. Here, we show that Aurora-B and myosin-IIB form a complex in vivo during telophase. Aurora-B phosphorylates the myosin-IIB rod domain at threonine 1847 (T1847), abrogating the ability of myosin-IIB monomers to form filaments. Furthermore, phosphorylation of myosin-IIB filaments by Aurora-B also promotes filament disassembly. We show that myosin-IIB possessing a phosphomimetic mutation at T1847 was unable to rescue cytokinesis failure caused by myosin-IIB depletion. Cells expressing a phosphoresistant mutation at T1847 had significantly longer intercellular bridges, implying that Aurora-B-mediated phosphorylation of myosin-IIB is important for abscission. We propose that myosin-IIB is a substrate of Aurora-B and reveal a new mechanism of myosin-IIB regulation by Aurora-B in the late stages of mitosis.  相似文献   

20.
Hyperkinetic Jak2 tyrosine kinase signaling has been implicated in several human diseases including leukemia, lymphoma, myeloma, and the myeloproliferative neoplasms. Using structure-based virtual screening, we previously identified a novel Jak2 inhibitor named G6. We showed that G6 specifically inhibits Jak2 kinase activity and suppresses Jak2-mediated cellular proliferation. To elucidate the molecular and biochemical mechanisms by which G6 inhibits Jak2-mediated cellular proliferation, we treated Jak2-V617F expressing human erythroleukemia (HEL) cells for 12 h with either vehicle control or 25 μM of the drug and compared protein expression profiles using two-dimensional gel electrophoresis. One differentially expressed protein identified by electrospray mass spectroscopy was the intermediate filament protein, vimentin. It was present in DMSO treated cells but absent in G6 treated cells. HEL cells treated with G6 showed both time- and dose-dependent cleavage of vimentin as well as a marked reorganization of vimentin intermediate filaments within intact cells. In a mouse model of Jak2-V617F mediated human erythroleukemia, G6 also decreased the levels of vimentin protein, in vivo. The G6-induced cleavage of vimentin was found to be Jak2-dependent and calpain-mediated. Furthermore, we found that intracellular calcium mobilization is essential and sufficient for the cleavage of vimentin. Finally, we show that the cleavage of vimentin intermediate filaments, per se, is sufficient to reduce HEL cell viability. Collectively, these results suggest that G6-induced inhibition of Jak2-mediated pathogenic cell growth is concomitant with the disruption of intracellular vimentin filaments. As such, this work describes a novel pathway for the targeting of Jak2-mediated pathological cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号