首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85°C for 20 min. Divalent metal ions Mg2+, Co2+, and Mn2+ were required for maximum activity of the enzyme. The Km values for D-xylose and D-glucose at 80°C and pH 7.5 were 6.66 and 142 mM, respectively, while Kcat values were 2.3 × 102 s-1 and 0.5 × 102 s-1, respectively.  相似文献   

2.
Xylose isomerase produced by Bacillus thermoantarcticus was purified 73-fold to homogeneity and its biochemical properties were determined. It was a homotetramer with a native molecular mass of 200 kDa and a subunit molecular mass of 47 kDa, with an isoelectric point at 4.8. The enzyme had a K m of 33 mM for xylose and also accepted D-glucose as substrate. Arrhenius plots of the enzyme activity of xylose isomerase were linear up to a temperature of 85°C. Its optimum pH was around 7.0, and it had 80% of its maximum activity at pH 6.0. This enzyme required divalent cations for its activity and thermal stability. Mn2+, Co2+ or Mg2+ were of comparable efficiency for xylose isomerase reaction, while Mg2+ was necessary for glucose isomerase reaction. Journal of Industrial Microbiology & Biotechnology (2001) 27, 234–240. Received 18 March 2001/ Accepted in revised form 03 July 2001  相似文献   

3.
A Lactobacillus sp. isolated from soil and capable of growing on xylose-containing medium exhibited high glucose isomerase activity. The enzyme was thermostable, stable toward dialysis, and activated by heat treatment. It did not show the presence of xylose or ribose isomerase activities; the Km for glucose and xylose substrates were 0.48M and 0.513M, respectively. The heat treatment of ultrasonic crude extract gave insoluble fixed active glucose isomerase enzyme. The properties of free and immobilized enzyme in heat-fixed whole cells differed in many respects. The optimum temperature for enzyme activity changed from 70 to 85°C, the optimum substrate concentration changed from 1.0M to 2.4M, and the optimum pH from 7.4 to 6.0. Co2+ and Mg2+ ions activated the enzyme when used singly, but in combination they inhibited the enzyme and Mn2+ had no effect on the enzyme. Free and immobilized enzymes, when used in the used in the conversions of corn and bagasse hydrolysates to fructose, gave 58, 25.6%, and 50, 27.6% conversions, respectively. Immobilized enzyme retained a significant activity for more than 30 hr and was able to operate at higher glucose concentrations showing less products inhibition effect as compared to free enzyme. In the batch process it was able to operate for about eight cycles.  相似文献   

4.
Glucose isomerase (D -xylose ketol-isomerase EC 5.3.1.5) from Bacillus Coagulans was partially purified and immobilized by adsorption to anion exchangers. The highest activities were obtained when the enzyme was adsorbed to DEAE-cellulose. On immobilization to DEAE-cellulose the measured optimum pH value for enzyme activity shifted from 7.2 to 6.8. There was no appreciable difference between the heat stabilities of soluble and immobilized enzyme. The Km app values for the immobilized enzyme were found to be 0.25M in the presence of 0.01M Mg2+ and 0.19M with 0.005M Mg2+, while those enzyme were 0.11 and 0.17M, re spectively. Under conditions of contimuous of D -glucose, a decrease of activity with time was observed, but this decrease was less at a low Mg2+ concentration and was affected by column geometry. There were no appreciable diffusional limitation effects in packed-bed columns.  相似文献   

5.
Production of Glucose Isomerase by Streptomyces flavogriseus   总被引:6,自引:3,他引:3       下载免费PDF全文
A microorganism that produces glucose isomerase was isolated from soil and identified as a strain of Streptomyces flavogriseus. The organism produced a large quantity of glucose isomerase when grown on straw hemicellulose, xylan, xylose, and H2SO4 hydrolysate of ryegrass straw. The organism produced glucose isomerase both intra- and extra-cellularly. The highest level of intracellular glucose isomerase (3.5 U/ml) was obtained in about 36 h by a culture grown on straw hemicellulose; the extracellular enzyme (1.5 U/ml) appeared in cultures grown for about 72 h. About equal levels of enzyme were produced in cultures grown on straw hemicellulose, xylan, xylose, and H2SO4 hydrolysate of straw, but production of the enzyme was drastically reduced when the organism was grown on other carbon sources. As a nitrogen source, corn steep liquor produced the best results. Soy flour extract, yeast extract, and various peptones also were adequate substrates for glucose isomerase production. Addition of Mg2+, Mn2+, or Fe2+ to the growth medium significantly enhanced enzyme production. The organism, however, did not require Co2+, which is commonly required by microorganisms used in the production of glucose isomerase.  相似文献   

6.
The coding region of Escherichia coli K12 xylose (glucose) isomerase gene was inserted into the pRAC expression vector and cloned in E. coli BL21(DE3) cells. After induction of expression of the cloned gene, the proportion of recombinant xylose isomerase accounted for 40% of the total protein content. As a result of one-stage purification by affinity chromatography, a protein preparation of 90% purity was obtained. The recombinant enzyme catalyzed the isomerization of glucose to fructose and exhibited maximum activity (0.8 U/mg) at 45°C and pH 6.8. The enzyme required Mg2+ ions as a cofactor. When Mg2+ and Co2+ ions were simultaneously present in the reaction medium, the enzyme activity increased by 15–20%. Complete replacement of Mg2+ with Co2+ decreased the enzyme activity. In the presence of Ca2+ at concentrations comparable to the concentration of Mg2+, the enzyme was not inhibited, although published data reported inhibition of similar enzymes by Ca2+. The recombinant enzyme exhibited a very low thermostability: it underwent a slow inactivation when incubated at 45°C and was completely inactivated after incubation at 65°C for 1 h.  相似文献   

7.
The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan–alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co2+, Cu2+, and Fe3+, increased the enzyme activity, whereas CA activity was inhibited by Pb2+, Hg2+, ethylenediamine tetraacetic acid (EDTA), 5,5′-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO2 to CaCO3. The maximum CO2 sequestration potential was achieved with immobilized CA (480 mg CaCO3/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO2 sequestration.  相似文献   

8.
Glucose isomerase is an important industrial enzyme that catalyzes the reversible isomerization of glucose to fructose. In this study, the effect of cobalt ions (Co2+) on the catalytic efficiency and thermostability of recombinant glucose isomerase from Thermobifida fusca was analyzed. The activity of glucose isomerase from engineered Escherichia coli supplemented with 1 mM Co2+ (C-GI) reached 41 U/ml, 2.1-fold higher than enzyme prepared from E. coli without additive (GI). The purified C-GI also exhibited an increased specific activity (23.8 U/mg compared to 12.1 U/mg for GI) and a greater thermostability (half-life of 17 h at 75 °C, 11.3-fold higher than GI (1.5 h)). The optimal temperature for C-GI shifted from 80 °C to 85 °C and demonstrated higher activity over pH 7.0–9.0. The kcat/Km value of C-GI (89.3 M?1 s?1) for the isomerization of glucose to fructose was nearly 1.75-fold higher than that of GI. In addition, the engineered cells were immobilized with the method of flocculation-cross linking. The immobilized cells supplemented with 1 mM Co2+ (C-IGI) had a better operational performance than cells without additives (IGI); at the end of 6 cycles, the conversion rate of C-IGI was still 43.1%, meeting the conversion rate requirement.  相似文献   

9.
A thermostable isoenzyme (T80) of xylose isomerase from the eukaryote xerophyte Cereus pterogonus was purified to homogeneity by precipitation with ammonium sulfate and column chromatography on Dowex-1 ion exchange, with Sephadex G-100 gel filtration, resulting in an approximately 25.55-fold increase in specific activity and a final yield of approximately 17.9%. Certain physiochemical and kinetic properties (Km and Vmax) of the T80 xylose isomerase isoenzyme were investigated. The molecular mass of the purified T80 isoenzyme was 68 kD determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polyclonal antibodies against the purified T80 isoenzyme recognized a single polypeptide band on Western blots. The activation energy required for the thermal denaturation of the isoenzyme was determined to be 61.84 KJ mol?1. The use of differential scanning calorimetry established the melting temperature of the CPXI isoenzyme to be 80°C, but when studied with added metal ions, melting temperature increases to more than the normal. Fluorescence spectroscopy of T80 isoenzymes yielded an emission peak with λem at 320 nm and 340 nm, respectively, confirming the presence of Trp residue in these proteins. Electron paramagnetic resonance (EPR) analysis at liquid nitrogen temperature established the presence of Mn2+ and Co2+ associated with each isoenzyme. These enzyme species exhibited different thermal and pH stabilities compared to their mesophilic counterparts and offered greater efficiency in functioning as a potential alternate catalytic converter of glucose in the production of high-fructose corn syrup (HFCS) for the sweetener industry and for ethanol production.  相似文献   

10.
d-Xylose (xylose) isomerase was extracted from xylose-grown cells of a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. The enzyme was purified 70-fold, over the original cell- free extract, with a yield of 2.4% in a homogeneous state, as judged on sodium dodecyl sulfate- polyacrylamide gel electrophoresis and high performance liquid chromatography. The molecular weight of the enzyme was determined to be 130,000, the enzyme being composed of two subunits of 65,000. The optimum pH and temperature for activity were 4.5 and 37~45°C, respectively. The enzyme activity was markedly enhanced by Mn2+, Mg2+ and Co2+, and the enzyme isomerized aldopentoses and aldohexoses. The Km values for xylose and d-glucose were 5.6 × 10?1m and 4.1 × 10?1m, and the Vmax values were 5.8 × 102 and 3.3 × 102 µmol/min/mg, respectively. NaHAsO4 7H2O and NaCN strongly inhibited the activity, but HgCl2, NaN3, dithiothreitol, monoiodoacetate and polyols such as d-sorbitol, xylitol and d-mannitol did not inhibit the activity.  相似文献   

11.
Summary Highest production of xylose Isomerase by Neurospora crassa grown with different carbon sources was at 0.014 U mg-1 with D-xylose. The enzyme exhibited maximum activity at pH 8.0 and 70°C and retained 100% activity at 45°C for 30 min at pH 8.0. It was activated by 8 mM Mg2+ whereas 2 mM Co2+ afforded protection against inactivation by heat. The K m for xylose was 10 mM and 22 mM for xylose Isomerase and xylose reductase respectively at 28°C and pH 7.0. This is the first report on the presence of xylose isomerase in N. crassa and the existence of two different pathways for the utilization of D-xylose.  相似文献   

12.
1. Two cyclic AMP independent protein kinases phosphorylating preferentially acidic substrates have been identified in soluble extract from human, rat and pig thyroid glands/ Both enzymes were retained on DEAE-cellulose. The first enzyme activity eluted between 60 and 100 mM phosphate (depending on the species), phosphorylated both casein and phosvitin and was retained on phosphocellulose; this enzyme likely corresponds to a casein kinase already described in many tissues. The second enzyme activity eluted from DEAE-cellulose at phosphate concentrations higher than 3000 mM, phosphorylated only phosvitin and was not retained on phophocellulose. These enzymes were neither stimulated by cyclic AMP, cyclic GMP and calcium, nor inhbiited by the inhibitor of the cyclic AMP dependent protein kinases. 2. The second enzyme activity was purified from pig thyroid gland by the association of affinity chromatography on insolubilized phosvitin and DEAE-cellulose chromatography. Its specific activity was increased by 8400. 3. The purified enzyme (phosvitin kinase) was analyzed for biochemical and enzymatic properties. Phosvitin kinase phosphorylated phosvitin with an apparent Km of 100 μg/ml; casein, histone, protamine and bovine serum albumin were not phosphorylated. The enzyme utilized ATP as well as GTP as phosphate donor with an apparent Km of 25 and 28 μM, respectively. It had an absolute requirement for Mg2+ with a maximal activity at 4 mM and exhibited an optimal activity at pH 7.0. The molecular weight of the native enzyme was 110 000 as determined by Sephacryl S300 gel filtration. The analysis by SDS-polyacrylamide gel electrophoresis revealed a major band with a molecualr weight of 35 000 suggesting a polymeric structure of the enzyme.  相似文献   

13.
The xylA gene, coding for xylose isomerase, from the extreme thermophile, Caldanaerobacter subterraneus subsp. yonseiensis was cloned, sequenced, and expressed in Escherichia coli. The nucleotide sequence of the xylA gene encoded a polypeptide of 438 residues with a calculated molecular weight of 50,170 Da. The purified XylA showed high sequence homology (92% identity) with that of Thermoanaerobacter thermohydrosulfuricus. The recombinant enzyme expressed in Escherichia coli was purified by heat treatment and gel chromatography. The purified enzyme was thermostable with optimal activity at 95°C. The enzyme required divalent cations including Zn2+ for its maximal activity and thermostability.  相似文献   

14.
The extracellular aminopeptidase from Bacillus subtilis was purified 300-fold by a simple procedure which gave a high recovery of enzyme. The native enzyme was shown to be a monomer of molecular weight 46,500 and to contain 1 g-atom of Zn2+ per mole of protein. Amino acid analyses demonstrated the protein to be rich in acidic residues and Lys, to possess about 3 residues of Met, and to be devoid of Cys. When activated with 5 mm Co(NO3)2 for 90 min the activity of the native enzyme was increased; the amount of activation depended on the identity of the substrate. Cobalt activation involved the reversible binding of 1 g-atom of Co2+ per mole of protein, without displacing the native Zn2+; KCo was 1.25 mm. Zinc ions competed with Co2+ during activation, a process characterized by a KZn of 28 μm. Ions other than Co2+ did not appreciably activate the enzyme.  相似文献   

15.
An inducible enzyme catalysing the hydrolysis of (+)-usnic acid to (+)-2-desacetylusnic acid and acetic acid has been purified 150-fold from the mycelium of Mortierella isabellina grown in the presence of (+)-usnic acid. Purification was achieved by treatment with protamine sulfate, (NH4)2SO4 fractionation, negative adsorption on alumina Cγ gel and hydroxylapatite followed by chromatography on DEAE-cellulose and Sephadex G-200. The elution pattern from a Sephadex G-200 column indicated a MW of ca 7.6 × 104 for the enzyme. The apparent Km value for (+)-usnic acid at the pH optimum (pH 7) was 4.0 × 10?5 M. The enzyme was specific for (+)-usnic acid and inactive towards (?)-usnic acid, (+)-isousnic acid or certain phloracetophenone derivatives. Its activity was enhanced in the presence of divalent metal ions such as Co2+, Ni2+, Mn2+, Mg2+ and Zn2+.  相似文献   

16.
A thermophilic strain of Streptomyces thermonitrificans produced a high activity of intracellular glucose isomerase (12 U/ml) when grown in a medium containing 1% (w/v) xylose, supplemented with 2% (w/v) sorbitol as the second carbon source, at 50°C for 16 h. Addition of Mg2+ enhanced enzyme production but the organism could grow and produce the enzyme in the absence of Co2+.The authors are with the Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, IndiaNCL Communication No. 5813  相似文献   

17.
1. An enzyme acting on aminoacyl-β-naphthylamides has been isolated from the soluble fraction of bovine brain and purified 205-fold by means of ammonium sulphate fractionation, hydroxyapatite adsorption and DEAE-Sephadex column chromatography. 2. Arylamidase requires thiol groups for retention of its activity, is heat-labile and is susceptible to freezing. p-Chloromercuribenzoate and N-ethylmaleimide inactivate the enzyme rapidly. 3. Metal ions are not required for its activity, but stimulation by Mn2+ and Mg2+ and inactivation by Co2+ and Zn2+ are observed. 4. Optimum pH7·5 in phosphate buffer was exhibited for all substrates tested except l-leucyl-β-naphthylamide, for which optimum pH is 6·5. 5. Km values for a number of substrates have been obtained and substrate inhibition at high concentrations was demonstrated. 6. The molecular weight is approx. 70000 as determined by Sephadex-gel filtration.  相似文献   

18.
Enzyme urease is extracted from the discarded seeds of pumpkin. Urease was purified to apparent homogeneity (5.2 fold) by heat treatment at 48 ± 1°C and gel filtration through Sephadex G-200. Effect of model metal ions on the activity of the homogeneous enzyme preparation (sp. activity 353 U/mg protein, A280/A260 = 1.12) of soluble as well as immobilized enzyme was investigated. The soluble and immobilized urease has been used for the quantitative estimation of general water pollution with heavy metal ions like Hg2+, Cu2+, Cd2+, and Co2+. The measurements of the urease residual activity have been carried out in tris-acetate buffer after pre-incubation of model metal salt. The inhibition was found to be biphasic with an initial rapid loss of activity and remainder in slow phase of 10∼15 min. The immobilization was done in 3.5% alginate beads leading to 86% of entrapment. There was no leaching of the enzyme over a period of 15 days at 4°C. The beads were fairly stable up to 50°C and exhibited activity even at −10°C. The inhibition by these ions was non-competitive and irreversible, hence could not be restored by dialysis. Based on the values of inhibition constant Ki the heavy-metal ions were found to inhibit urease in the following order Hg2+ > Cu2+ > Cd2+ > Co2+.  相似文献   

19.
The bark beetle Dendroctonus armandi is able to kill living Pinus armandi and has caused serious damage to pine forest in Northern China. As the most important symbiotic fungus of D. armandi, Leptographium qinlingensis plays an important role in the invasion process of the bark beetle. The laccase secreted by it are involved in lignin degradation to provide utilizable nutrition for D. armandi, and catalyze some biochemical reactions, causing the damages of tree tissue. In present study, the extracellular laccase of L. qinlingensis was purified by using the ammonium sulfate precipitation and DEAE-cellulose (DE-52) column chromatography. Furthermore, the effects of temperature, pH value and metal ions on it were investigated and characterized. The purified enzyme exerted its optimal activity with guaiacol. The catalytic efficiencies Km and Vmax determined for substrate guaiacol were 15.4 μM and 372.9 IU mg?1, respectively. The optimum pH and temperature for the purified enzyme was 4.4 and 45 °C, respectively, with the highest enzyme specific activity of 7,000 IU mg?1. Moreover, the metal ions, Co2+, Mn2+, Ca2+, Mg2+, Fe2+ and Cd2+, especially Hg2+, showed significantly inhibition effects on its activity. To understand the characteristics of this laccase might provide an opportunity and theoretical basis to promote integrated pest management of D. armandi.  相似文献   

20.
Glucose isomerase was purified by means of acetone fractionation, DEAE-cellulose column chromatography, DEAE-Sephadex column chromatography and crystallization. The purified enzyme appeared to be homogeneous on ultracentrifugation and electrophoresis. The sedimentation coefficient, s20,w, the diffusion coefficient, D20,w, and partial specific volume of the enzyme were 8.0S, 4 × 10?7cm2/sec and 0.69 ml/g, respectively. The molecular weight of the enzyme was estimated to be 157,000 from the sedimentation and diffusion measurements. The crystalline glucose isomerase contained cobalt and magnesium ions. The properties of the enzyme were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号