首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pan SH  Malcolm BA 《BioTechniques》2000,29(6):1234-1238
The T7 polymerase-based pET System is one of the most powerful and widely used prokaryotic expression systems available today. Expression of even slightly toxic gene products in BL21 (DE3), however, has been problematic due to basal expression, which leads to decreased plasmid stability and variable yields following large-scale growth and induction. Use of host strains such as BL21 (DE3) pLysS provides high stringency and consistent expression but typically at the cost of reduced protein levels upon induction. The experiments presented here suggest that catabolite repression can effectively reduce basal expression of the T7 polymerase gene in BL21 (DE3), yielding tight regulation and consistency comparable to that of BL21 (DE3) pLysS. By switching to a poor carbon source for the final growth cycles, the higher expression levels typical of BL21 (DE3) can readily be obtained upon induction.  相似文献   

2.
3.
Plasmid instability and growth inhibition of plasmid-bearing cells after induction were encountered when E. coli BL21(DE3) was used as host for the production of antihuman ovarian carcinoma x antihuman CD3 single-chain bispecific antibody (AhOC x AhCD3), human soluble B lymphocyte stimulator fused with thioredoxin (Trx-hsBLyS) and human parathyroid hormone fused with thioredoxin (Trx-hPTH). A derivative of BL21(DE3), namely, BLRM(DE3), isolated and showing superiority in AhOC x AhCD3 production in our previous work, was further used here for more efficient production of these three different recombinant proteins. By using BLRM(DE3) as host, the simplified one-stage fermentation process was developed, which was more labor-saving and yielded AhOC x AhCD3, comparable to that of the traditional two-stage fermentation process. Also, the plasmid stabilities and production yields of Trx-hsBLyS and Trx-hPTH were dramatically improved by the application of BLRM(DE3) instead of BL21(DE3). A high Trx-hsBLyS yield (about 3.5 g/L) was obtained, which was more than twice as much as that of the recombinant BL21(DE3) strain. The Trx-hPTH yield was improved from about 700 mg/L to 1 g/L. These results further showed the superiority of BLRM(DE3) to BL21(DE3) and suggested its effectiveness for other BL21(DE3)/pET heterologous protein expression systems, which encounter similar problems.  相似文献   

4.
Escherichia coli BL21 (DE3) is an excellent and widely used host for recombinant protein production. Many variant hosts were developed from BL21 (DE3), but improving the expression of specific proteins remains a major challenge in biotechnology. In this study, we found that when BL21 (DE3) overexpressed glucose dehydrogenase (GDH), a significant industrial enzyme, severe cell autolysis was induced. Subsequently, we observed this phenomenon in the expression of 10 other recombinant proteins. This precludes a further increase of the produced enzyme activity by extending the fermentation time, which is not conducive to the reduction of industrial enzyme production costs. Analysis of membrane structure and messenger RNA expression analysis showed that cells could underwent a form of programmed cell death (PCD) during the autolysis period. However, blocking three known PCD pathways in BL21 (DE3) did not completely alleviate autolysis completely. Consequently, we attempted to develop a strong expression host resistant to autolysis by controlling the speed of recombinant protein expression. To find a more suitable protein expression rate, the high‐ and low‐strength promoter lacUV5 and lac were shuffled and recombined to yield the promoter variants lacUV5‐1A and lac‐1G. The results showed that only one base in lac promoter needs to be changed, and the A at the +1 position was changed to a G, resulting in the improved host BL21 (DE3‐lac1G), which resistant to autolysis. As a consequence, the GDH activity at 43 h was greatly increased from 37.5 to 452.0 U/ml. In scale‐up fermentation, the new host was able to produce the model enzyme with a high rate of 89.55 U/ml/h at 43 h, compared to only 3 U/ml/h achieved using BL21 (DE3). Importantly, BL21 (DE3‐lac1G) also successfully improved the production of 10 other enzymes. The engineered E. coli strain constructed in this study conveniently optimizes recombinant protein overexpression by suppressing cell autolysis, and shows great potential for industrial applications.  相似文献   

5.
The effect of two Escherichia coli expression strains on the production of recombinant human protein fragments was evaluated. High-throughput protein production projects, such as the Swedish Human Protein Atlas project, are dependent on high protein yield and purity. By changing strain from E. coli BL21(DE3) to E. coli Rosetta(DE3) the overall success rate of the protein production has increased dramatically. The Rosetta(DE3) strain compensates for a number of rare codons. Here, we describe how the protein expression of human gene fragments in E. coli strains BL21(DE3) and Rosetta(DE3) was evaluated in two stages. Initially a test set of 68 recombinant proteins that previously had been expressed in BL21(DE3) was retransformed and expressed in Rosetta(DE3). The test set generated very positive results with an improved expression yield and a significantly better purity of the protein product which prompted us to implement the Rosetta(DE3) strain in the high-throughput protein production. Except for analysis of protein yield and purity the sequences were also analyzed regarding number of rare codons and rare codon clusters. The content of rare codons showed to have a significant effect on the protein purity. Based on the results of this study the atlas project permanently changed expression strain to Rosetta(DE3).  相似文献   

6.
To improve the plasmid stability during the production of antihuman ovarian carcinoma × antihuman CD3 single-chain bispecific antibody (AhOC×AhCD3), the Escherichia coli BL21(DE3) host cell was optimized serially. Firstly, an isogenic recombination-deficient (recA ) derivative of BL21(DE3), namely BLR(DE3), was used as host instead of BL21(DE3). Although the segregational plasmid stability was greatly improved, AhOC×AhCD3 yield was not improved due to the severe growth inhibition of plasmid-bearing BLR(DE3) cells and the competitive plasmid instability after induction. Secondly, a mutant BLR(DE3), namely BLRM(DE3), was screened by using LB agar plates plus ampicillin and isopropyl-β-d-thiogalactopyranoside. Using this new host, growth inhibition of recombinant cells after induction was eliminated, and plasmids could be stably maintained even after long-time induction in a nonselective medium. At last, about 1.2 g/l AhOC×AhCD3, which was about thrice as much as those of recombinant BL21(DE3) and BLR(DE3) strains, was yielded.  相似文献   

7.
The surface layer protein encoding genes from five mosquito-pathogenic Bacillus sphaericus isolates were amplified and sequenced. Negative staining of the S-layer protein extracted from the cell wall of wild-type B. sphaericus C3-41 was prepared. It showed a flat-sheet crystal lattice structure. Two genes encoding the entire and N-terminally truncated S-layer protein (slpC and DeltaslpC respectively), were ligated into plasmid pET28a and expressed in Escherichia coli. SDS-PAGE revealed that about 130 KD and 110 KD proteins could be expressed in the cytoplasm of recombinant E. coli BL21(pET28a/slpC) and E. coli BL21(pET28a/DeltaslpC) respectively. Furthermore, an intracellular sheet-like or fingerprint-shape structure was investigated in two recombinant strains, which expressed SlpC and DeltaSlpC protein respectively, by ultrathin microscopy study, but bioassay results suggested that the S-layer protein of wild B. sphaericus C3-41 and recombinant E. coli BL21 (pET28a/slpC) have no direct toxicity against mosquito larvae. These results should provide information for further understanding of the function of S-layer protein of pathogenic B. sphaericus.  相似文献   

8.
由重组E.colirPE553D所表达的基因缺失突变脱毒的重组铜绿假单胞菌外毒素A(rEPA),目前大量以载体蛋白用于多种细菌多糖蛋白结合疫苗研究。rEPA的表达量受众多因素的影响,种子的制备方式就是重要因素之一。本文用长期冷冻保存的和新鲜提取的质粒分别转化宿主菌E.coliBL21(λDE3)后制备种子,并将它们和冻干保存的E.colirPE553D在相同条件下培养和诱导,经SDS-PAGE分析表明长期保存的质粒转化宿主后的重组工程菌生长速度较慢,但rEPA的表达量和新鲜质粒转化制备的工程菌基本相同,而冻干保存的工程菌E.colirPE553D几乎丧失了表达rEPA的能力。  相似文献   

9.
C型产气荚膜梭菌β1、β2毒素基因的融合   总被引:7,自引:1,他引:7  
利用PCR技术 ,从C型产气荚膜梭菌染色体DNA中扩增出 β1 和 β2 毒素基因 ,构建了含 β1 - β2 融合基因表达质粒的重组菌株BL2 1(DE3) (pETXB1_2 )。经酶切鉴定和序列测定证实 ,构建的重组质粒pETXB1_2含有 β1 - β2 融合基因 ,且基因序列和阅读框架正确。经ELISA检测 ,重组菌株表达的 β1 - β2 融合蛋白能够被 β1 、β2 毒素抗体识别。免疫实验结果表明 ,用β1 - β2 融合蛋白免疫的小鼠可以抵抗 1MLD的C型产气荚膜梭菌C5 9_4 4毒素攻击 ,表明构建的重组菌株可以作为预防仔猪红痢基因工程亚单位苗的候选菌株。  相似文献   

10.
Escherichia coli BL21(DE3) is widely used to overexpress proteins. In this overexpression host, the gene encoding the target protein is located on a plasmid and is under control of the T7 promoter, which is recognized exclusively by the T7 RNA polymerase (RNAP). The T7 RNAP gene is localized on the chromosome, and its expression is governed by the non-titratable, IPTG-inducible lacUV5 promoter. Recently, we constructed the Lemo21(DE3) strain, which allows improved control over the expression of genes from the T7 promoter. Lemo21(DE3) is a BL21(DE3) strain equipped with a plasmid harboring the gene encoding T7 lysozyme, an inhibitor of the T7 RNAP, under control of the exceptionally well-titratable rhamnose promoter. The overexpression yields of a large collection of membrane proteins in Lemo21(DE3) at different concentrations of rhamnose indicated that this strain may be very suitable for optimizing the production of membrane proteins. However, insight in the mechanism by which optimized expression yields are achieved in Lemo21(DE3) is lacking. Furthermore, whether the overexpressed proteins are suitable for functional and structural studies remains to be tested. Here, we show that in Lemo21(DE3), (i) the modulation of the activity of the T7 RNAP by the T7 lysozyme is key to optimizing the ratio of membrane proteins properly inserted in the cytoplasmic membrane to non-inserted proteins; (ii) maximizing the yields of membrane proteins is accompanied by reduction of the adverse effects of membrane protein overexpression, resulting in stable overexpression; and (iii) produced membrane proteins can be used for functional and structural studies.  相似文献   

11.
Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The "NiCo" strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein.  相似文献   

12.
Heterologous expression of Integral Membrane Proteins (IMPs) is reported to be toxic to the host system in many studies. Even though there are reports on various concerns like transformation efficiency, growth properties, protein toxicity, inefficient expression and protein degradation in IMP overexpression, no studies so far addressed these issues in a comprehensive way. In the present study, two transmembrane proteins of the pathogen Leptospira interrogans, namely Signal peptidase (SP), and Leptospira Endostatin like A (Len-A) were taken along with a cytosolic protein Hydrolase (HYD) to assess the differences in transformation efficiency, protein toxicity, and protein stability when over expressed in Escherichia coli (E. coli). Bioinformatics analysis to predict the transmembrane localization indicated that both SP and Len are targeted to the membrane. The three proteins were expressed in full length in the E. coli expression strain, BL 21 (DE3). Significant changes were observed for the strains transformed with IMP genes under the parameters analysed such as, the transformation efficiency, survival of colonies on IPTG-plate, culture growth kinetics and protein expression compared to the strain harbouring the cytosolic protein gene.  相似文献   

13.
HTSS以一株破伤风生产菌株基因组DNA为模板,通过上游引物中几个碱基的修改,PCR扩增出破伤风毒素C片段(TTc)基因,构建了原核表达质粒pET-42(b)/TTc,在大肠杆菌BL21(DE3)中表达。重组蛋白分子量约50kD,表达量为22%,超声波破碎显示为可溶性重组蛋白。通过对培养基、诱导时间、诱导温度的优化,重组蛋白的表达量和可溶性均有提高。Western blotting检测表达产物可与破伤风C片段单克隆抗体产生特异的免疫反应。该工作为亚单位疫苗或载体蛋白的开发奠定了基础。  相似文献   

14.
Chen L  Yang ZJ  Zhou Z  Cai WT  Teng XZ  Zhang GX 《病毒学报》2012,28(3):195-200
本研究利用大肠杆菌表达系统构建肠道病毒71型3C蛋白酶,并进行纯化,对其酶活性进行研究。首先,将3C蛋白酶基因克隆至pET28a载体,在大肠杆菌BL21(DE3)中表达,Ni-NTA柱亲和层析纯化获得3C蛋白酶,经肠激酶酶切去除N端His标签后获得无His标签的3C蛋白酶,再以荧光多肽为底物进行酶活性研究。经过双酶切鉴定和测序证实,重组表达质粒pET28a-3C构建正确,表达的重组3C蛋白酶相对分子质量约22kD;纯化后有无His标签的3C蛋白酶均能催化荧光底物3B-3C,并且两者的酶动力学数据无显著差异,含有His标签的3C蛋白酶Km、Vmax、Kcat分别为22μM、434nM.Min-1、0.0669 Min-1;其最适反应pH为7.0,最佳反应温度为30℃~37℃。本实验成功表达并纯化了重组3C蛋白酶,该酶具有良好的活力,为抗病毒抑制剂、结构蛋白组装、疫苗开发及3C蛋白酶检测方法的研发奠定了基础。  相似文献   

15.
Acyl-acyl carrier protein synthase (Aas) is widely used to synthesize thioester adducts of fatty acids between 8 and 18 carbons in length enzymatically to the phosphopantetheine group of acyl carrier protein. The enzyme is an 80.6-kDa inner membrane protein that functions in vivo as a 2-acylglycerophosphoethanolamine acyltransferase. The E. coli aas open reading frame was inserted into the expression plasmid pET28a so that, upon expression, a 21-amino-acid extension containing 6 consecutive histidine residues was added to the carboxyl terminus. The plasmid was designated pAasH. The activity of Aas in membranes was assessed from several cell lines. Membranes from the commonly used host line BL21(DE3) containing pAasH accumulated 30-fold and 38-fold more Aas activity than membranes from BL21(DE3) cells lacking the plasmid, when induced with isopropyl beta-d-thiogalactopyranoside (IPTG) or lactose, respectively. When pAasH was expressed under IPTG induction in cell line C41(DE3), a previously described cell line selected to enhance the expression of membrane proteins, Aas levels accumulated to 135-fold higher levels than in the cell line lacking the plasmid. Functional Aas can be isolated from either BL21(DE3) or C41(DE3) cell lines by differential centrifugation, followed by detergent extraction with Triton X-100 and nickel nitrilotriacetic acid affinity chromatography. The overexpression of Aas in cell line C41(DE3) is noteworthy compared to cell line BL21(DE3) because it results in a 3- to 4-fold higher accumulation of active enzyme in the membrane fraction and a lower proportion of inactive protein in the inclusion body.  相似文献   

16.
Keratoepithelin (KE) is an extracellular protein participating in cell adhesion and differentiation. Mutations of the KE gene (on 5q31 in humans) cause deposition of abnormal proteins (amyloid and non-amyloid) in corneal stroma and lead to several corneal dystrophies in humans. However, further studies on the KE protein have been limited by the intrinsic difficulty of purifying this protein. A high-expression plasmid containing human KE gene was constructed to generate recombinant KE proteins in Escherichia coli. The plasmid was transformed into E. coli BL21 (DE3) and the recombinant protein was expressed as an insoluble His-tagged fusion protein and purified by nickel chelation affinity chromatography under denaturing conditions. On average, 12 mg of purified KE was routinely obtained from 1L of culture media. The recombinant KE was refolded in arginine-containing dialysis solutions and the recovery of bioactive KE typically was approximately 70%. The procedures developed in this report should enable reproducible production of KE and related mutant proteins in large quantities and facilitate future studies on biochemical and biophysical properties of KE and the pathogenesis of related corneal dystrophies.  相似文献   

17.
Acyl–acyl carrier protein synthase (Aas) is widely used to synthesize thioester adducts of fatty acids between 8 and 18 carbons in length enzymatically to the phosphopantetheine group of acyl carrier protein. The enzyme is an 80.6-kDa inner membrane protein that functions in vivo as a 2-acylglycerophosphoethanolamine acyltransferase. The E. coli aas open reading frame was inserted into the expression plasmid pET28a so that, upon expression, a 21-amino-acid extension containing 6 consecutive histidine residues was added to the carboxyl terminus. The plasmid was designated pAasH. The activity of Aas in membranes was assessed from several cell lines. Membranes from the commonly used host line BL21(DE3) containing pAasH accumulated 30-fold and 38-fold more Aas activity than membranes from BL21(DE3) cells lacking the plasmid, when induced with isopropyl β- -thiogalactopyranoside (IPTG) or lactose, respectively. When pAasH was expressed under IPTG induction in cell line C41(DE3), a previously described cell line selected to enhance the expression of membrane proteins, Aas levels accumulated to 135-fold higher levels than in the cell line lacking the plasmid. Functional Aas can be isolated from either BL21(DE3) or C41(DE3) cell lines by differential centrifugation, followed by detergent extraction with Triton X-100 and nickel nitrilotriacetic acid affinity chromatography. The overexpression of Aas in cell line C41(DE3) is noteworthy compared to cell line BL21(DE3) because it results in a 3- to 4-fold higher accumulation of active enzyme in the membrane fraction and a lower proportion of inactive protein in the inclusion body.  相似文献   

18.
产腈水合酶重组大肠杆菌的质粒稳定性研究   总被引:7,自引:0,他引:7  
成功构建了腈水合酶(nitrile hydratase,NHase)高表达的重组大肠杆菌E.coliBL21(DE3)/pETNHM(Kanr),研究了重组质粒pETNHM在重组菌株中的质粒稳定性。结果表明,pETNHM具有较好的结构稳定性,连续传代60代后质粒的基因序列没有明显缺失,且能够正常表达腈水合酶。pETNHM具有分离不稳定性,在无抗生素选择压力下,连续传代48代后质粒丢失的无质粒细胞开始出现。琼脂糖凝胶电泳定量分析表明,2/3的质粒pETNHM以二聚体形式存在,导致质粒拷贝数的下降。进一步研究表明,重组细胞的连续高速分裂及腈水合酶的高表达也会造成质粒拷贝数的下降,从而降低其分离稳定性。反之,重组菌株相对于宿主菌株的较高比生长速率有利于保持含质粒细胞的生长优势,卡那霉素的选择压力则能够保证质粒的稳定遗传。  相似文献   

19.
表达大肠杆菌K88ac-ST1-LTB融合蛋白基因工程菌株的构建   总被引:15,自引:2,他引:13  
利用PCR技术,从大肠杆菌C83902质粒中扩增出K88ac基因、ST1突变基因和LTB基因,通过分离、纯化、内切酶酶切、连接和转化,构建了含K88ac-ST1-LTB融合基因表达载体的重组菌株BL21(DE3)(pXKST3LT5)。经酶切鉴定和DNA序列分析证实,构建的重组质粒pXKST3LT5中含有K88ac-ST1-LTB融合基因,且基因序列和阅读框架均正确。经ELISA检测,重组菌株表达的K88ac-ST1-LTB融合蛋白能够被ST1单抗、LTB和K88ac抗体识别。经乳鼠灌胃试验证实,表达的融合蛋白已丧失天然ST1肠毒素的活性。免疫实验结果表明,K88ac-ST1-LTB融合蛋白能够诱发小白鼠产生抗体,该抗体具有中和天然ST1肠毒素的毒性作用,表明构建的重组菌株可以作为预防仔猪黄、白痢基因工程菌苗的候选菌株。  相似文献   

20.
The precise control of multiple heterologous enzyme expression levels in one Escherichia coli strain is important for cascade biocatalysis, metabolic engineering, synthetic biology, natural product synthesis, and studies of complexed proteins. We systematically investigated the co-expression of up to four thermophilic enzymes (i.e., α-glucan phosphorylase (αGP), phosphoglucomutase (PGM), glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH)) in E. coli BL21(DE3) by adding T7 promoter or T7 terminator of each gene for multiple genes in tandem, changing gene alignment, and comparing one or two plasmid systems. It was found that the addition of T7 terminator after each gene was useful to decrease the influence of the upstream gene. The co-expression of the four enzymes in E. coli BL21(DE3) was demonstrated to generate two NADPH molecules from one glucose unit of maltodextrin, where NADPH was oxidized to convert xylose to xylitol. The best four-gene co-expression system was based on two plasmids (pET and pACYC) which harbored two genes. As a result, apparent enzymatic activities of the four enzymes were regulated to be at similar levels and the overall four-enzyme activity was the highest based on the formation of xylitol. This study provides useful information for the precise control of multi-enzyme-coordinated expression in E. coli BL21(DE3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号