首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Summary Some merodiploids containing two different trpC alleles grow in the absence of added tryptophan. The trpC gene product is the bifunctional enzyme indoleglycerol phosphate synthetase but the ability to grow on minimal medium does not require that the alleles be dificient in different functions. This indication of complementation is supported by the evidence that the trpC alleles, of the merodiploids, can be transferred by transduction or by the trp-colV,B episome. Genetic recombination between episome and chromosome is seen to occur, but at a rate too low to explain the observed results. The nature of the interaction between the trpC alleles is not readily explained since indoleglycerol phosphate synthetase appears to consist of a single polypeptide chain in in vitro studies.  相似文献   

2.
Localized mutagenesis of the fadR region of the Escherichia coli chromosome resulted in the isolation of two classes of fadR regulatory mutants. The first class was constitutive for the fatty acid degradative enzymes and presumably defective for fadR function. The second class was rarer and resulted in the inability to utilize fatty acids as a sole carbon source (Fad-). These fadR superrepressor mutants [fadR(S)] had greatly reduced levels of the beta-oxidative enzymes required for growth on fatty acids. The fadR(S) mutants reverted to Fad+ at a high frequency (10(-5], and the resulting Fad+ revertants were constitutive for expression of the fad enzymes (fadR). Merodiploid analysis showed the fadR(S) allele to be dominant to both fadR+ and fadR alleles.  相似文献   

3.
Two merodiploids of Escherichia coli that contain genes for the lac operon on both chromosome and episome were tested for production of lac enzymes after growth on various carbon sources. The specific activity of beta-galactosidase (and of thiogalactoside transacetylase) was about twice that from haploid cells when grown on glycerol. With succinate as carbon source, the specific activity increased by an additional factor of 3. Up to 25% of the soluble cell protein is beta-galactosidase in these strains, one of which is inducible and the other constitutive. The enzyme is purified easily in high yield by ammonium sulfate fractionation and electrophoresis.  相似文献   

4.
A plasmid was isolated which included the region of the Escherichia coli chromosome carrying the known genes concerned with oxidative phosphorylation (unc genes). This plasmid was used to prepare partial diploids carrying normal unc alleles on the episome and one of the three mutant alleles (unc A401, uncB402 or unc-405) on the chromosome. These strains were compared with segregants from which the plasmid had been lost. Dominance of either normal ormutant unc alleles was determined by growth on succinate, growth yields on glucose, Mg-ATPase (Mg2+-stimulated adenosine triphosphatase) activity, atebrin-fluorescence quenching, ATP-dependent transhydrogenase activity and oxidative phosphorylation. In all the above tests, dominance of the normal allele was observed. However, in membranes from the diploid strains which carried a normal allele and either of the mutant alleles affecting Mg-ATPase activity (uncA401 or unc-405), the energy-linked functions were only partially restored.  相似文献   

5.
Transposon Tn10 was used to mutagenize the fadR gene in Escherichia coli. Mutants bearing fadR:Tn10 insertion mutations were found to (i) utilize the noninducing fatty acid decanoate as sole carbon source, (ii) beta-oxidize fatty acids at constitutive rates, and (iii) contain constitutive levels of the five key beta-oxidative enzymes. These characteristics were identical to those observed in spontaneous fadR mutants. The constitutive phenotype presented by the fadR:Tn10 mutants was shown to be genetically linked to the associated transposon-encoded drug resistance. These results suggest that the fadR gene product exerts negative control over the fatty acid degradative regulon. The fadR gene of E. coli has been mapped through the use of transposon-mediated fadR insertion mutations. The fadR locus is at 25.5 min on the revised map and cotransduces with purB, hemA, and trp. Three-factor conjugational and transductional crosses indicate that the order of loci in this region of the chromosome is purB-fadR-hemA-trp. Spontaneous fadR mutants were found to map at the same location. Strains that exhibit alterations in the control of the fad regulon in response to changes in temperature were also isolated and characterized. These fadR(Ts) mutants were constitutive for the fad enzymes at elevated temperatures and inducible for these activities at low temperatures. The fadR(Ts) mutations also map at the fadR locus. These results strongly suggest that the fadR gene product is a repressor protein.  相似文献   

6.
7.
Phage Mu-1 cts61 was used for transposition of pts1 and ptsH genes. The received F'-factors AUF2 and AUF3 carry short fragments of the bacterial chromosome. Merodiploid strains with double pts genes were selected in sexduction crosses with the appropriate recA recipients. Effect of the gene dose was not registered in pts+/pts+ strains in the case of accumulation of the substrates of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and in the case of bacterial growth in the presence of these carbohydrates. This indicates that the enzyme (enzymes) II of the PTS is the limiting step in the transpost process. Induction of beta-galactosidase and the growth on carbohydrates not transported via the PTS (maltose, lactose) were greatly reduced in pts mutant. Introduction of the pts+ allele with episome lead to the restoration of the two above processes. These data show that the phospho approximately HPr generating system of the PTS is directly (or in indirect manner) involved in the regulation of catabolite-sensitive operons. Glucose repression was markedly increased in pts+/pts+ merodiploids as compared with pts+/pts- ones and with pts+ bacteria. Possible mechanisms of this effect are discussed.  相似文献   

8.
Mutants of Escherichia coli K-12 constitutive for the synthesis of the enzymes of fatty acid degradation (fadR) have elevated levels of the glyoxylate shunt enzymes, isocitrate lyase and malate synthase. A temperature-sensitive fadR strain has high levels of glyoxylate shunt enzymes when grown at elevated temperatures but has low, inducible levels of glyoxylate shunt enzymes when grown at low temperatures. The increased activity of glyoxylate shunt enzymes did not appear to be due to the degradation of intracellular fatty acids in fadR strains or differences in allosteric effectors in fadR versus fadR+ strains. These studies suggest that the fadR gene product may be involved in the regulation of the glyoxylate operon.  相似文献   

9.
10.
Two types of mutants lacking the second purine nucleoside phosphorylase (PNPase 2) activity were isolated using the Escherichia coli K-12 pndR strains with constitutive or inosine-inducible synthesis of the PNPase 2. The mutations of the first type are recessive to the pndR+ allele on the F' episome. They are closely linked to the original pndR+ mutations and therefore affect the pndR gene encoding the activator protein. The mutations of the second type affect the PNPase 2 structural gene (pndA) and are recessive to the pndA+ allele on the F' episome. The nupC-pndR-pndA-ptsH-cysA gene order was established by means of four- and five-factorial transductional crosses.  相似文献   

11.
We isolated an F' episome of Escherichia coli carrying the glnA+ gene from K. aerogenes and an F' episome of E. coli carrying the glnA4 allele from K. aerogenes responsible for the constitutive synthesis of glutamine synthetase. Complementation tests with these episomes showed that the glnA4 mutation (leading to the constitutive synthesis of active glutamine synthetase) was in the gene identified by mutations glnA20, glnA51, and glnA5 as the structural gene for glutamine synthetase. By using these merodiploid strains we were able to show that the glnA51 mutation lead to the synthesis of a glutamine synthetase that lacked enzymatic activity but fully retained its regulatory properties. Finally, we discuss a model that explains the several phenotypes associated with mutations such as glnA4 located within the structural gene for glutamine synthetase leading to constitutive synthesis of active glutamine synthetase.  相似文献   

12.
Escherichia coli K-12 mutants constitutive for the synthesis of the enzymes of fatty acid degradation (fad) synthesize significantly less unsaturated fatty acid (UFA) than do wild-type (fadR+) strains. The constitutive fadR mutants synthesize less UFA than do fadR+) strains both in vivo and in vitro. The inability of fadR strains to synthesize UFAs at rates comparable to those of fadR+ strains is phenotypically asymptomatic unless the fadR strain also carries a lesion in fabA, the structural gene for beta-hydroxydecanoyl-thioester dehydrase. Unlike fadR+ fabA(Ts) mutants, fadR fabA(Ts) strains synthesize insufficient UFA to support their growth even at low temperatures and, therefore, must be supplemented with UFA at both low and high temperatures. The low levels of UFA in fadR strains are not due to the constitutive level of fatty acid-degrading enzymes in these strains. These results suggest that a functional fadR gene is required for the maximal expression of UFA biosynthesis in E. coli.  相似文献   

13.
Previously we described the dose-response relationship for X-ray-induced mutation of the two homologous alleles of the thymidine kinase (tk) gene in a human lymphoblastoid cell line (Amundson and Liber, 1991). The two alleles were differentially mutable by X-rays, with one allele 6-10 times more mutable than the other. This difference was shown to be due to the virtual absence of the class of slow growth mutants from one allele. In the present report, restriction fragment length polymorphism (RFLP) analyses of informative markers along chromosome 17 have been used to delineate a region of chromosome 17 in which heterozygosity is lost with relatively high frequency among slow growth TK- mutants from the more mutable allele. However, loss of heterozygosity of this region has never been observed in normal growth mutants obtained from the more mutable allele, or in TK- mutants from the other, less mutable, allele. This may indicate the presence of a heterozygous essential gene on chromosome 17 distal to TK1.  相似文献   

14.
Recombinant Escherichia coli fadR atoC(Con) mutants containing the polyhydroxyalkanoate (PHA) biosynthesis genes from Alcaligenes eutrophus are able to incorporate significant levels of 3-hydroxyvalerate (3HV) into the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]. We have used E. coli fadR (FadR is a negative regulator of fatty acid oxidation) and E. coli atoC(Con) (AtoC is a positive regulator of fatty acid uptake) mutants to demonstrate that either one of these mutations alone can facilitate copolymer synthesis but that 3HV levels in single mutant strains are much lower than in the fadR atoC(Con) strain. E. coli atoC(Con) mutants were used alone and in conjunction with atoA and atoD mutants to determine that the function of the atoC(Con) mutation is to increase the uptake of propionate and that this uptake is mediated, at least in part, by atoD+. Similarly, E. coli fadR mutants were used alone and in conjunction with fadA, fadB, and fadL mutants to show that the effect of the fadR mutation is dependent on fadB+ and fadA+ gene products. Strains that were mutant in the fadB or fadA locus were unable to complement a PHA biosynthesis pathway that was mutant at the phaA locus (thiolase), but a strain containing a fadR mutation and which was fadA+ fadB+ was able to complement the phaA mutation and incorporated 3HV into P(3HB-co-3HV) to a level of 29 mol%.  相似文献   

15.
The regulation of crp gene expression by CRP-cAMP complex was studied in E. coli strain by the crp-lac operon fusion. F'141 crp+ episome decreased 5-7 fold the high level of crp-lac expression in crp strains while F'141 crp episome had no effect. The hybrid plasmid pCAP2 crp+ with the intact crp gene did not affect the crp gene expression level in crp mutants, though they had acquired the Crp+ phenotype just as they did in F'141 crp+ presence. The F'141 crp+ and pCAP2 crp+ combination in crp mutants also resulted in decrease of the crp gene expression comparable to the registered in the presence of the F'141 crp+ plasmid. Similar repression occurred only in cya+ strains but not in cya strains. The crp gene is supposed to possess negative regulation by CRP-cAMP complex with a complementary factor also necessary. The latter is evidently located in an E. coli chromosome site overlapped by F'141 episome.  相似文献   

16.
A membrane componenet of the dag transport system which serves for glycine, D-alanine, and D-serine is coded for by the dagA gene at minute 83 of the Escherichia coli chromosome. Merodiploid strains (dagA+/dagA+) show two to three times the transport activity for only those amino acids that are substrates of the dag transport system. The increased transport activity is a result of a two-to threefold increase in Vmax for amino acid uptake with little or no change in the Km value. The two- to threefold gene dose effect of the merodiploid strains is maintained even during carbon starvation, eliminating the possibility that a greater energy supply for transport activity may account for the effect. Since merodiploids which carry more than one copy of the dagA allele show a gene dose response for transport activity, we conclude that the membrane componenet of the dag transport system which is coded for by the dagA allele is present in limiting amounts.  相似文献   

17.
The synthesis of a second purine nucleoside phosphorylase (PNPII) in the wild type strains of Escherichia coli K-12 is induced by xanthosine. Three types of pndR mutants were studied, which are altered in regulation of PNPII synthesis: 1) constitutive, 2) inducible by nucleosides of hypoxantine and adenine as much as by xanthosine and 3) defective in synthesis of PNPII. All pndR mutations are located in transductional crosses on 51 min of E. coli genetic map. The order of genes established is as follows: pndR-ptsH-cysA. Mutations of the first and second type are dominant, while pndR21 mutation of the third type is recessive to the pndR+ allele on F' episome. The data obtained support the suggestion that the product of pndR regulatory gene is an activator protein necessary for the expression of the PNPII structural gene.  相似文献   

18.
19.
One of the most studied examples of adaptive mutation is a strain of Escherichia coli, FC40, that cannot utilize lactose (Lac-) but that readily reverts to lactose utilization (Lac+) when lactose is its sole carbon source. Adaptive reversion to Lac+ occurs at a high rate when the Lac- allele is on an F' episome and conjugal functions are expressed. It was previously shown that nonselected mutations on the chromosome did not appear in the Lac- population while episomal Lac+ mutations accumulated, but it remained possible that nonselected mutations might occur on the episome. To investigate this possibility, a second mutational target was created on the Lac- episome by mutation of a Tn1O element, which encodes tetracycline resistance (Tetr), to tetracycline sensitivity (Tets). Reversion rates to Tetr during normal growth and during lactose selection were measured. The results show that nonselected Tetr mutations do accumulate in Lac- cells when those cells are under selection to become Lac+. Thus, reversion to Lac+ in FC40 does not appear to be adaptive in the narrow sense of the word. In addition, the results suggest that during lactose selection, both Lac+ and Tetr mutations are created or preserved by the same recombination-dependent mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号