首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Emerging evidence suggests that tumors contain and are driven by a cellular component that displays stem cell properties, the so-called cancer stem cells (CSCs). CSCs have been identified in several solid human cancers; however, there are no data about CSCs in primary human gastric cancer (GC). By using CD133 and CD44 cell surface markers we investigated whether primary human GCs contain a cell subset expressing stem-like properties and whether this subpopulation has tumor-initiating properties in xenograft transplantation experiments. We examined tissues from 44 patients who underwent gastrectomy for primary GC. The tumorigenicity of the cells separated by flow cytometry using CD133 and CD44 surface markers was tested by subcutaneous or intraperitoneum injection in NOD/SCID and nude mice. GCs included in the study were intestinal in 34 cases and diffuse in 10 cases. All samples contained surface marker-positive cells: CD133(+) mean percentage 10.6% and CD133(+)/CD44(+) mean percentage 27.7%, irrespective of cancer phenotype or grade of differentiation. Purified CD133(+) and CD133(+)/CD44(+) cells, obtained in sufficient number only in 12 intestinal type GC cases, failed to reproduce cancer in two mice models. However, the unseparated cells produced glandular-like structures in 70% of the mice inoculated. In conclusion, although CD133(+) and CD133(+)/CD44(+) were detectable in human primary GCs, they neither expressed stem-like properties nor exhibited tumor-initiating properties in xenograft transplantation experiments.  相似文献   

2.
High-grade gliomas (World Health Organization grade III anaplastic astrocytoma and grade IV glioblastoma multiforme), the most prevalent primary malignant brain tumors, display a cellular hierarchy with self-renewing, tumorigenic cancer stem cells (CSCs) at the apex. While the CSC hypothesis has been an attractive model to describe many aspects of tumor behavior, it remains controversial due to unresolved issues including the use of ex vivo analyses with differential growth conditions. A CSC population has been confirmed in malignant gliomas by preferential tumor formation from cells directly isolated from patient biopsy specimens. However, direct comparison of multiple tumor cell populations with analysis of the resulting phenotypes of each population within a representative tumor environment has not been clearly described. To directly test the relative tumorigenic potential of CSCs and non-stem tumor cells in the same microenvironment, we interrogated matched tumor populations purified from a primary human tumor transplanted into a xenograft mouse model and monitored competitive in vivo tumor growth studies using serial in vivo intravital microscopy. While CSCs were a small minority of the initial transplanted cancer cell population, the CSCs, not the non-stem tumor cells, drove tumor formation and yielded tumors displaying a cellular hierarchy. In the resulting tumors, a fraction of the initial transplanted CSCs maintained expression of stem cell and proliferation markers, which were significantly higher compared to the non-stem tumor cell population and demonstrated that CSCs generated cellular heterogeneity within the tumor. These head-to-head comparisons between matched CSCs and non-stem tumor cells provide the first functional evidence using live imaging that in the same microenvironment, CSCs more than non-stem tumor cells are responsible for tumor propagation, confirming the functional definition of a CSC.  相似文献   

3.
Cancer chemotherapy efficacy is frequently impaired by either intrinsic or acquired tumor resistance.A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells.In recent years,the cancer stem cell(CSC) theory has changed the classical view of tumor growth and therefore the therapeutic perspective.Overcoming intrinsic and acquired resistance of cancer stem/progenitor cells to current clinical treatments represents a major challenge in treating and curing the most aggressive and metastatic cancers.On the other hand,the identification of CSCs in vivo and in vitro relies on specific surface markers that should allow the sorting cancer cells into phenotypically distinct subpopulations.In the present review,recent papers published on CSCs in solid tumors(breast,prostate,brain and melanoma) are discussed,highlighting critical points such as the choice of markers to sort CSCs and mouse models to demonstrate that CSCs are able to replicate the original tumor.A discussion of the possible role of aldehyde dehydrogenase and CXCR6 biomarkers as signaling molecules in CSCs and normal stem cells is also discussed.The author believes that efforts have to be made to investigate the functional and biological properties of putative CSCs in cancer.Developing diagnostic/prognostic tools to follow cancer development is also a challenge.In this connection it would be useful to develop a multidisciplinary approach combining mathematics,physics and biology which merges experimental approaches and theory.Biological models alone are probably unable to resolve the problem completely.  相似文献   

4.
The cancer stem cell (CSC) hypothesis implicates the development of new therapeutic approaches to target the CSC population. Characterization of the pathways that regulate CSCs activity will facilitate the development of targeted therapies. We recently reported that the enzymatic activity of ALDH1, as measured by the ALDELFUOR assay, can be utilized to isolate normal and malignant breast stem cells in both primary tumors and cell lines. In this study, utilizing a tumorsphere assay, we have demonstrated the role of retinoid signaling in the regulation of breast CSCs self-renewal and differentiation. Utilizing the gene set enrichment analysis (GSEA) algorithm we identified gene sets and pathways associated with retinoid signaling. These pathways regulate breast CSCs biology and their inhibition may provide novel therapeutic approaches to target breast CSCs.  相似文献   

5.
Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood–brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self‐renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase‐like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down‐regulation of ROR1 suppressed the expression of epithelial‐mesenchymal transition‐related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Stem cells are undifferentiated cells that renew themselves while simultaneously producing differentiated tissue- or organspecific cells through asymmetric cell division. The appreciation of the importance of stem cells in normal tissue biology has prompted the idea that cancers may also develop from a progenitor pool (the "cancer stem cell (CSC) hypothesis"), and this idea is gaining increasing acceptance among scientists. CSCs are sub-populations of cancer cells responsible for tumor initiation, differentiation, recurrence, metastasis, and drug resistance. First identified in the hematopoietic system, CSCs have also been discovered in solid tumors of the breast, colon, pancreas, and brain. Recently, the tissue-specific stem cells of the normal urothelium have been proposed to reside in the basal layer, and investigators have isolated phenotypically similar populations of cells from urothelial cancer cell lines and primary tumors. Herein, we review the CSC hypothesis and apply it to explain the development of the two different types of bladder cancer: noninvasive ("superficial") carcinoma and invasive carcinoma. We also examine potential approaches to identify CSCs in bladder cancer as well as therapeutic applications of these findings. While exciting, the verification of the existence of CSCs in bladder cancer raises several new questions. Herein, we identify and answer some of these questions to help readers better understand bladder cancer development and identify reasonable therapeutic strategy for targeting stem cells.  相似文献   

7.
人肿瘤干细胞(human cancer stem cells,CSCs)分离后异种移植至模型内的成瘤特性,为研究肿瘤病因学和制订抗癌策略提供了新的手段和方法。但是,目前人肿瘤干细胞的鉴别离不开移植至异种免疫缺陷鼠内建立肿瘤干细胞的动物模型。本文主要从CSCs的概念、CSCs与肿瘤的关系、CSCs异种移植模型研究进展、模型建立的影响因素、模型建立存在的问题等进行简要综述,为异种移植模型的建立提供参考。  相似文献   

8.
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells (CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis in tumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.  相似文献   

9.
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells(CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis intumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.  相似文献   

10.
Increasing evidence has confirmed the existence of cancer stem cells (CSCs) in both hematological malignancies and solid tumors. However, the origin of CSCs is still uncertain, and few agents have been capable of eliminating CSCs till now. The aim of this study was to investigate whether bulk pancreatic cancer cells could convert into CSCs under certain conditions and explore whether metformin and curcumin can kill pancreatic CSCs. Aspc1, Bxpc3 and Panc1 pancreatic cancer cells were cultured in stem cell culture medium (serum-free Dulbecco's modified Eagle medium/Nutrient Mixture F-12 containing basic fibroblast growth factor, epidermal growth factor, B27 and insulin) for 5 days and it was found that all the pancreatic cancer cells aggregated into spheres and expressed pancreatic cancer stem cell surface markers. Then characteristics of Panc1 sphere cells were analyzed and cytotoxicity assays were performed. The results show that Panc1 sphere cells exhibited CSC characteristics and were more resistant to conventional chemotherapy and more sensitive to metformin and curcumin than their parent cells. These findings suggested that bulk pancreatic cancer cells could acquire CSC characteristics under certain conditions, which may support the “yin-yang” model of CSCs (interconversion between bulk cancer cells and CSCs). These results also showed that metformin and curcumin could be candidate drugs for targeting pancreatic CSCs.  相似文献   

11.
This study aims to examine whether or not cancer stem cells exist in malignant peripheral nerve sheath tumors (MPNST). Cells of established lines, primary cultures and freshly dissected tumors were cultured in serum free conditions supplemented with epidermal and fibroblast growth factors. From one established human MPNST cell line, S462, cells meeting the criteria for cancer stem cells were isolated. Clonal spheres were obtained, which could be passaged multiple times. Enrichment of stem cell-like cells in these spheres was also supported by increased expression of stem cell markers such as CD133, Oct4, Nestin and NGFR, and decreased expression of mature cell markers such as CD90 and NCAM. Furthermore, cells of these clonal S462 spheres differentiated into Schwann cells, smooth muscle/fibroblast and neurons-like cells under specific differentiation-inducing cultural conditions. Finally, subcutaneous injection of the spheres into immunodeficient nude mice led to tumor formation at a higher rate compared to the parental adherent cells (66% versus 10% at 2.5 × 10(5)). These results provide evidence for the existence of cancer stem cell-like cells in malignant peripheral nerve sheath tumors.  相似文献   

12.

Background

Cancer stem cells (CSCs) can proliferate and self-renew extensively due to their ability to express anti-apoptotic and drug resistant proteins, thus sustaining tumor growth. Therefore, the strategy to eradicate CSCs might have significant clinical implications. The objectives of this study were to examine the molecular mechanisms by which resveratrol inhibits stem cell characteristics of pancreatic CSCs derived from human primary tumors and KrasG12D transgenic mice.

Methodology/Principal Findings

Human pancreatic CSCs (CD133+CD44+CD24+ESA+) are highly tumorigenic and form subcutaneous tumors in NOD/SCID mice. Human pancreatic CSCs expressing high levels of CD133, CD24, CD44, ESA, and aldehyde dehydrogenase also express significantly more Nanog, Oct-4, Notch1, MDR1 and ABCG2 than normal pancreatic tissues and primary pancreatic cancer cells. Similarly, CSCs from KrasG12D mice express significantly higher levels of Nanog and Oct-4 than pancreatic tissues from Pdx-Cre mice. Resveratrol inhibits the growth (size and weight) and development (PanIN lesions) of pancreatic cancer in KrasG12D mice. Resveratrol inhibits the self-renewal capacity of pancreatic CSCs derived from human primary tumors and KrasG12D mice. Resveratrol induces apoptosis by activating capase-3/7 and inhibiting the expression of Bcl-2 and XIAP in human CSCs. Resveratrol inhibits pluripotency maintaining factors (Nanog, Sox-2, c-Myc and Oct-4) and drug resistance gene ABCG2 in CSCs. Inhibition of Nanog by shRNA enhances the inhibitory effects of resveratrol on self-renewal capacity of CSCs. Finally, resveratrol inhibits CSC''s migration and invasion and markers of epithelial-mesenchymal transition (Zeb-1, Slug and Snail).

Conclusions/Significance

These data suggest that resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. In conclusion, resveratrol can be used for the management of pancreatic cancer.  相似文献   

13.
During the progression of malignant peritoneal mesothelioma (MPeM), tumor nodules propagate diffusely within the abdomen and tumors are characterized by distinct phenotypic sub-types. Recent studies in solid organ cancers have shown that cancer stem cells (CSCs) play a pivotal role in the initiation and progression of tumors. However, it is not known whether tumorigenic stem cells exist and whether they promote tumor growth in MPeM. In this study, we developed and characterized a CSC model for MPeM using stably expandable tumorigenic stem cells derived from patient tumors. We found morphologically distinct populations of CSCs that divide asymmetrically or symmetrically in MPeM in vitro cell culture. The MPeM stem cells (MPeMSCs) express stem cell markers c-MYC, NES and VEGFR2 and in the presence of matrix components cells form colony spheres. MPeMSCs are multipotent, differentiate into neuronal, vascular and adipose progeny upon defined induction and the differentiating cells express lineage-specific markers such as TUBB3, an early neuronal marker; vWF, VEGFA, VEGFC and IL-8, endothelial markers; and PPARγ and FABP4, adipose markers. Xenotransplantation experiments using MPeMSCs demonstrated early tumor growth compared with parental cells. Limiting dilution experiments using MPeMSCs and endothelial lineage-induced cells derived from a single MPeMSC resulted in early tumor growth in the latter group indicating that endothelial differentiation of MPeMSCs is important for MPeM tumor initiation. Our observation that the MPeM tumors contain stem cells with tumorigenic potential has important implications for understanding the cells of origin and tumor progression in MPeM and hence targeting CSCs may be a useful strategy to inhibit malignant progression.  相似文献   

14.
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs.Since the inception of the field several decades ago,regenerative medicine therapies,namely stem cells,have received significant attention in preclinical studies and clinical trials.Apart from their known potential for differentiation into the various body cells,stem cells enhance the organ's intrinsic regenerative capacity by altering its environment,whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration.Recently,research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells(CSCs/CPCs).The global burden of cardiovascular diseases’morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy.This review will discuss the nature of each of the CSCs/CPCs,their environment,their interplay with other cells,and their metabolism.In addition,important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells.Moreover,the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration.Finally,the novel role of nanotechnology in cardiac regeneration will be explored.  相似文献   

15.
Adult stem cells can be identified by label-retaining cell (LRC) approach based on their ability to retain nucleoside analog, such as bromodeoxyuridine (BrdU). We hypothesized that mouse nasopharynx contains a small population of epithelial stem/progenitor cells that may be detected by the LRC technique. To identify LRCs in mice nasopharyngeal epithelia, neonatal mice were intraperitoneally injected with BrdU twice daily for 3 consecutive days. After an 8-week chase, long-term BrdU-labeled LRCs (∼2% of cells) were detected in the adult mice nasopharyngeal epithelia by immunostaining with BrdU antibody and some of LRCs (∼12% of cells) were found to be recruited into the S phase of cell cycle with an additional radioactive thymidine-labeling technique, indicating that the stem cells also divide, most likely asymmetrically. To further investigate whether the LRCs existed in human nasopharyngeal carcinoma (NPC) tissues, three NPC cell lines (5-8F, 6-10B and TMNE) were labeled with BrdU in vitro and then individually engrafted into the back of nude mice, which developed tumors. Again, label-retaining stem cells were found in all the three kinds of NPC xenograft tumors (∼0.3% of cells), around 16% of which were also labeled with radioactive thymidine. Thus, this study has demonstrated for the first time the presence of epithelial LRCs in mouse nasopharyngx and human NPC tissues and these stem-like LRCs are not completely quiescent, as they will be recruited into the cell cycle to participate physiological or pathological process at any moment. More importantly, our data showed that NPC also contained stem cells, which are most likely the cause for NPC spread, metastasis and recurrence.  相似文献   

16.
Cancer stem cells: lessons from leukemia   总被引:24,自引:0,他引:24  
A fundamental problem in cancer research is identification of the cell type capable of initiating and sustaining growth of the tumor--the cancer stem cell (CSC). While the existence of CSCs was first proposed over 40 years ago, only in the past decade have these cells been identified and characterized in hematological malignancies. Recent studies have now described CSCs in solid tumors of the breast and brain, raising the possibility that such cells are at the apex of all neoplastic systems. An appreciation of the biological distinctness of CSCs is crucial not only for the design of studies to understand how tumorigenic pathways operate but also for the development of specific therapies that effectively target these cells in patients.  相似文献   

17.
Cancer stem cells (CSCs) are a specific subset of cancer cells that sustain tumor growth and dissemination. They might represent a significant treatment target to reduce malignant progression and prevent tumor recurrence. In solid tumors, several hierarchically organized CSC clones coexist, even within a single tumor. Among them, CSCs displaying an embryonic stem cell ‘stemness'' signature, based on the expression of Oct-4, Nanog and Sox2, are present in distinct high-grade tumor types associated with poor prognosis. We previously designed a model to isolate pure populations of these CSCs from distinct solid tumors and used it to screen for molecules showing selective toxicity for this type of CSC. Here we show that human immunodeficiency virus (HIV)-protease inhibitors (HIV-PIs) specifically target CSCs expressing an embryonic signature derived from tumors with distinct origins. They reduced proliferation in a dose-dependent manner with a higher specificity as compared with the total population of cancer cells and/or healthy stem cells, and they were efficient in inducing cell death. Lopinavir was the most effective HIV-PI among those tested. It reduced self-renewal and induced apoptosis of CSCs, subsequently impairing in vivo CSC-induced allograft formation. Two key pharmacophores in the LPV structure were also identified. They are responsible for the specificity of CSC targeting and also for the overall antitumoral activity. These results contribute to the identification of molecules presenting selective toxicity for CSCs expressing an embryonic stemness signature. This paves the way to promising therapeutic opportunities for patients suffering from solid cancer tumors of poor prognosis.  相似文献   

18.
最近的一项研究报导,采用流式细胞仪分选技术从人胃癌细胞株中分离出CD44胃癌干细胞. 20~30×103个CD44+细胞入NOD/SCID 鼠腹部皮下和胃浆膜下能形成胃癌移植瘤, 100×103个CD44的细胞入NOD/SCID 鼠体内不形成肿瘤.采用无血清、无粘附间质的干细胞体外培养方法,发现CD44的细胞能形成肿瘤微球体,具有自我更新能力,而CD44的细胞则不形成球形克隆.上述的实验结果说明,在人胃癌细胞株中存在胃癌肿瘤干细胞.据此可以相信,胃癌干细胞是胃癌细胞中具有自我更新及分化潜能的一小群细胞,不能被目前的化疗、放疗等抗癌治疗措施所杀灭,是胃癌术后复发、肿瘤进展扩散转移的根源.胃癌干细胞可能来源于骨髓干细胞.随着对胃癌肿瘤干细胞生物学研究的深入,必将为胃癌的临床诊断和治疗提供新的策略.  相似文献   

19.
The cancer stem cell (CSC) model states that tumors contain a reservoir of self-renewing cells that maintain the heterogeneous cell population of the tumor. These cells appear to be resistant to therapy and can therefore survive to repopulate the tumor during progression to therapy resistant disease. The biology of CSCs is still not definitive since it is difficult to isolate them from solid tumors and analyze their characteristics in vitro. Another challenge is to correlate these characteristics with tumor development and progression in vivo. Using the prostate CSC as a model, this review presents the CSC hypothesis, reviews the origin, identification and functions of prostate CSCs, and discusses the clinical implications and therapeutic challenges CSCs have for cancer therapy.  相似文献   

20.
Cancer comprises heterogeneous cells, ranging from highly proliferative immature precursors to more differentiated cell lineages. The emergence of the “cancer stem cell” (CSC) hypothesis that they are the cells responsible for resistance, metastasis and secondary tumor appearance identifies these populations as novel obligatory targets for the treatment of cancer. CSCs, like their normal tissue-specific stem cell counterparts, are multipotent, partially differentiated, self-sustaining, yet transformed cells. To date, most studies on CSC biology have relied on the use of murine models and primary human material. In spite of much progress, the use of primary material presents several limitations that limit our understanding of the mechanisms underlying CSC formation, the similarities between normal stem cells and CSCs and ultimately, the possibility for developing targeted therapies. Recently, different strategies for controlling cell fate have been applied to the modeling of human cancer initiation and for the generation of human CSC models. Here we will summarize recent developments in the establishment and application of reprogramming strategies for the modeling of human cancer initiation and CSC formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号