首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification of RNAase II to electrophoretic homogeneity is described. The exonuclease is activated by K+ and Mg2+ and hydrolyses poly(A) to 5'-AMP, exclusively as described by Nossal and Singer (1968, J. Biol. Chem. 243, 913--922). To separate RNAase II from ribosomes, DEAE-cellulose chromatography was used. Two additional chromatographic steps give a preparation that yields 10 bands after analytical polyacrylamide gel electrophoresis. Preparative polyacrylamide gel electrophoresis resulted in a final preparation which on analytical polyacrylamide gels gives a single band. A molecular weight of 76 000 +/- 4000 was obtained from Sephadex G-200 chromatography, with three bands from sodium dodecyl sulfate (SDS) denaturation and SDS gel electrophoresis. The subunits have a molecular weight of 40 000 +/- 2000, 33 000 +/- 2000, and 26 000 +/- 1000. The enzyme thus appears to consist of three dissimilar subunits.  相似文献   

2.
Deoxyribonucleic acid polymerase-beta (EC 2.7.7.7) FROM THE Novikoff hepatoma has been purified over 200 000-fold (based on the increase in specific activity), by ammonium sulfate fractionation and chromatography on DEAE-Sephadex, phosphocellulose, hydroxylapatite, and DNA-cellulose. The enzyme is remarkably stable through all stages of purification until DNA-cellulose chromatography when it must be kept in buffers containing 0.5 M NaCl and 1 mg/ml bovine serum albumin for stability. The enzyme appears to be homogeneous as evidenced by a single stainable band when subjected to electrophoresis in polyacrylamide gels of different porosity. The stainable band corresponds to the DNA polymerase as determined by slicing sister gels and assaying for enzyme activity. The specific activity of the homogeneous preparation is about 60 000 units/mg. The enzyme lacks detectable exonuclease or endonuclease activity. It has a molecular weight of 32 000 as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis. In sucrose gradients, the molecular weight is estimated at 31 000. The isoelectric point of the hydroxylapatite fraction enzyme is 8.5. The Novikoff beta-polymerase requires all four deoxyribonucleoside triphosphates, primer-template, and a divalent cation for maximal activity. The apparent Km for total deoxyribonucleoside triphosphate is 7-8 muM and for DNA 125 mug/ml. Activated DNA, rendered 7% acid soluble by DNase I, is the preferred primer-template, although a number of synthetic polynucleotides can by efficiently utilized, particularly in the presence of Mm2+ optimum is 7 mM; the Mn2+ optimum is 1 mM. The pH optimum is 8.4 in Tris-HCl or 9.2 in glycine buffer. The beta-polymerase is sstimulated about twofold by NaCl or KCl at an optimum of 50-100 MM, and the enzyme maintains considerable activity at high ionic strengths. The DNA polymerase is inhibited by ethanol, acetone, and a variety of known polymerase inhibitors. Glycols stimulate the enzyme as does spermine or spermidine. Unlike most beta-polymerases, the Novikoff enzyme is moderately sensitive to N-ethylmaleimide.  相似文献   

3.
Isolation of the DNA polymerase alpha core enzyme from mouse cells   总被引:2,自引:0,他引:2  
DNA polymerase alpha has been purified from mouse hybridoma cells approximately 30,000-fold using a combination of conventional and high performance liquid chromatography. In contrast to previous characterizations of mammalian DNA polymerase alpha, this enzyme has a single high molecular mass polypeptide (185 kDa) in tight association with a 68-kDa polypeptide and this structure appears to be the core DNA polymerase of the mouse cells. The biochemically purified enzyme, with a specific activity of approximately 200,000 units/mg protein, has an estimated molecular mass by gel filtration chromatography of 240 kDa and sedimentation value of 9 S, consistent with the enzyme being a heterodimer of 185 and 68 kDa. The enzyme is sensitive to both N-ethylmaleimide and aphidicolin and insensitive to ddTTP. Using an activated DNA template, the apparent Km values for the deoxynucleotide triphosphates are approximately 0.5-1 microM. The purified DNA polymerase has neither exonuclease nor primase activities and is the predominant DNA polymerase alpha activity in the mouse cells.  相似文献   

4.
The palmitoyl-CoA hydrolase activity, which in human blood platelets is mainly localized in the cytosol fraction [Berge, Vollset & Farstad (1980) Scand. J. Clin. Lab. Invest. 40, 271--279], was found to be extremely labile. Inclusion of glycerol or palmitoyl-CoA stabilized the activity during preparation. Gel-filtration studies revealed multiple forms of the enzyme with molecular weights corresponding to about 70 000, 40 000 and 24 000. The relative recovery of the mol.wt.-70 000 form was increased by the presence of 20% (v/v) glycerol or 10 microM-palmitoyl-CoA. The three enzyme forms are probably unrelated, since they were not interconvertible. The three different species of palmitoyl-CoA hydrolase were purified by DEAE-cellulose and hydroxyapatite chromatography, isoelectric focusing and high-pressure liquid chromatography (h.p.l.c.) to apparent homogeneity. The three enzymes had isoelectric points (pI) of 7.0, 6.1 and 4.9. The corresponding molecular weights were 27 000--33 000, 66 000--72 000 and 45 000--49 000, calculated from h.p.l.c. and Ultrogel AcA-44 chromatography. The apparently purified enzymes were unstable, as most of the activity was lost during purification. The enzyme with an apparent molecular weight of 45 000--49 000 was split into fractions with molecular weights of less than 10 000 by re-chromatography on h.p.l.c. concomitantly with a loss of activity. The stimulation of the activity by the presence of serum albumin seems to depend on the availability of palmitoyl-CoA, as has been reported for other palmitoyl-CoA hydrolases. [Berge & Farstad (1979) Eur. J. Biochem. 96, 393--401].  相似文献   

5.
Purification of RNAase II to electrophoretic homogeneity is described. The exonuclease is activated by K+ and Mg2+ and hydrolyses poly(A) to 5′-AMP, exclusively as described by Nossal and Singer (1968, J. Biol. Chem. 243, 913–922). To separate RNAase II from ribosomes, DEAE-cellulose chromatography was used. Two additional chromatographic steps give a preparation that yields 10 bands after analytical polyacrylamide gel electrophoresis. Preparative polyacrylamide gel electrophoresis resulted in a final preparation which on analytical polyacrylamide gels gives a single band. A molecular weight of 76 000 ± 4000 was obtained from Sephadex G-200 chromatography, with three bands from sodium dodecyl sulfate (SDS) denaturation and SDS gel electrophoresis. The subunits have a molecular weight of 40 000 ± 2000, 33 000 ± 2000, and 26 000 ± 1000. The enzyme thus appears to consist of three dissimilar subunits.  相似文献   

6.
Highly purified, but not homogeneous, samples of helix-destabilizing protein 1 from mouse myeloma contain a novel oligonucleotide-releasing DNA exonuclease. This enzyme was separated from helix-destabilizing protein 1 and obtained in highly purified form. A polypeptide of Mr 41 000 is a main constituent of the purified enzyme, and this polypeptide comigrated with the exonuclease activity during the final step of the purification, Sephacryl S-200 gel filtration where the enzyme had a native Mr of 40 000. Overall purification of enzyme activity was greater than 20 000-fold. This exonuclease releases 5'-oligonucleotides in a limited processive manner in both the 5'----3' and 3'----5' directions. Activity of the enzyme is resistant to 1 mM N-ethylmaleimide, requires a divalent cation, has an alkaline pH optimum, and degrades single-stranded DNA much faster than double-stranded DNA or RNA. The predominant oligonucleotide product with uniformly labeled substrates is (pdN)2. With 3' end labeled substrates, greater than 95% of the labeled products are (pdN)4 and (pdN)5; with 5' end labeled substrates, the main labeled product is (pdA)2. The rate of product release from 3' and 5' end labeled substrates is nearly identical at 37 degrees C. A model of the action of this enzyme and a comparison with a human placenta exonuclease [Doniger, J., & Grossman, L. (1976) J. Biol. Chem. 251, 4579-4587] are discussed.  相似文献   

7.
Delta5-3beta-hydroxysteroid oxidoreductase was extracted in magnesium-containing Tris buffer from sonicated Streptomyces griseocarneus cells. The enzyme was partially purified (150 X) by ion exchange chromatography and gel filtration following (NH4)2SO4 fractionation. Upon gel filtration on Sephadex G-75 to G-200, the greatest part of the activity gave a peak in the fractionation range. The enzyme obtained from the gel yielded small enzyme molecules on repeated chromatography. A molecular weight of 32 to 36 000 was calculated for the activity appearing in the fractionation range of Sephadex G-75 to G-200. The enzyme is highly specific for the irreversible oxidation of the 3beta-hydroxyl group in steroids with a trans-anellated A : B ring system with either C5 or C6 double bond. Delta5-3-ketosteroids are converted into delta5-3-ketosteroids at a high rate, but the isomerase activity cannot be separated from the oxidoreductase activity either by chromatography or by selective heat inactivation. NAD, NADP, FMN or FAD did not influence the activity, but the enzyme is inactive in the absence of molecular oxygen.  相似文献   

8.
Three distinct DNA-dependent DNA polymerase activities have been partially purified from normal rat liver. Soluble activities are separable into two distinct fractions (P1 and P2) by phosphocellulose chromatography. A low-molecular-weight DNA polymerase was isolated from purified nuclei. The enzymes were characterized according to chromatographic and sedimentation behavior, enzymological properties, and response to various inhibitors. The results indicate that fraction P1 corresponds to the high-molecular-weight enzyme and suggest that polymerase P2 may be derived from partial dissociation of the high-molecular-weight enzyme. The molecular weight of polymerase P1 was estimated to be about 250 000 by Sephadex column chromatography. Both fraction P2 and nuclear DNA polymerase appeared to be low-molecular-weight enzymes. However, the molecular size of these activities was apparently different. The estimated molecular weights of nuclear and P2 enzyme are about 40 000 and 25 000, respectively. As with the nuclear enzyme, polymerase P2 (but not P1) appeared to be free of detectable exonuclease activity. All of these polymerases showed a marked preference for initiated polydeoxyribonucleotide templates. The rat liver polymerases differed in their ability to use poly[d(A-T)-A1 primer-template, as is shown by the ratios of their activity with this synthetic polymer to that with activated DNA: 0.5, 2.75, and 1.34 for P1, P2, and nuclear polymerase, respectively. Denatured DNA was a poor template for both enzymes P1 and P2, but it was inert as template for the nuclear enzyme. Although each of these polymerases required all four deoxynucleoside triphosphates for maximal activity, they catalyzed a high rate of synthesis in the absence of one or more deoxynucleoside triphosphates. Such a 'limited' synthesis was much more extensive for polymerase P2 and nuclear enzyme than for P1 was the most sensitive of the three to sulphydryl reagents, ehtidium bromide, heparin, and single-stranded DNA. The responses of P2 and nuclear enzymes to various inhibitors were very similar. However, these two enzymes respond differently to heat and high ionic strength.  相似文献   

9.
Enoate reductase from Clostridium tyrobutyricum was purified by a rapid novel procedure. Chromatography on DEAE-Sepharose and on hydroxyapatite resulted in a high yield of about 90% pure enzyme in less than 10 h. A purity greater than 98% could be obtained by additional chromatography on Sephacryl S-300. The enzyme sediments in the analytical ultracentrifuge as a single, symmetrical boundary with a velocity of S(0)20,w = 24.9 S. Equilibrium ultracentrifugation yielded a molecular mass of 940 000 +/- 20 000 Da. The enzyme contains one type of subunit as shown by dodecyl sulfate electrophoresis and partial sequence determination. A subunit molecular mass of about 73 000 Da was established by dodecyl sulfate electrophoresis and by sedimentation equilibrium analysis in guanidine hydrochloride. In addition to FAD, iron and labile sulfur, the enzyme purified by the new method showed approximately 0.7 mol of FMN per mol of subunit. A dissociation product sedimenting at a velocity of S(0)20,w = 9.8 S can be obtained by various experimental protocols. The fragment was obtained in pure form by gel permeation chromatography. The molecular mass was 230 000 +/- 10 000 Da as shown by sedimentation equilibrium analysis. Thus it appears that the dissociation product is a trimer of the 73 000-Da subunit. The formation of the 10-S fragment by dissociation of the native enzyme is accompanied by the loss of most of the FMN, whereas the FAD content is not changed. The fragment catalysed the reduction of acetylpyridine adenine dinucleotide by NADH. However, enoate reductase activity with NADH or methylviologen as cosubstrate was low. Electron micrographs of negatively stained enoate reductase show trigonal symmetry. The data suggest that enoate reductase is a dodecamer (tetramer of trimers) with tetrahedral symmetry.  相似文献   

10.
A simplified procedure for purification of nuclease from Serratia marcescens, including chromatography on DEAE- and phosphocellulose in a stationary regime has been developed. The method described results in a physically homogenous enzyme, which does not contain phosphatase, phosphodiesterase or proteinase admixtures. The molecular weight of the enzyme as determined by polyacrylamide gel electrophoresis is 33 000 +/- 10%. p-Chloromercurybenzoate (10(-2) M) completely inactivates the enzyme, while beta-mercaptoethanol (0,64 M) in the presence of 2 M urea causes only partial inactivation of the enzyme. Urea (4 or 7 M), when added to the reaction mixture, increases the enzyme activity 2,2-, 1,7- and 1,4-fold as compared to native, denaturated DNA and RNA, respectively.  相似文献   

11.
The heterogeneity of dipeptidyl peptidase IV (EC 3.4.14.5) was investigated in normal human serum. Thin-layer analytical isoelectric focusing revealed the presence of multiple molecular forms of the enzyme, their isoelectric points being in the pH range of 3.30-4.25. The maximum of enzyme activity appeared around pH 3.50. After treatment with neuraminidase the pI shifted to 4.70-5.40 with two maxima at pH 5.00 and 5.15. The Triton X-100 solubilized as well as the papain-treated-Triton X-100 solubilized enzyme from the whole human adult jejunal biopsy were also found to be heterogeneous. They focused--both before and after neuraminidase treatment--at pH values different from those of the enzyme of normal human serum. There was almost no pI shift after neuraminidase treatment of the intestinal enzyme from adult enterobiopsy. Electrophoresis in continuous polyacrylamide gradient gels as well as gel chromatography on Bio-Gel A-1.5m revealed two molecular forms of dipeptidyl peptidase IV in normal human serum. The estimated relative molecular mass of the major enzyme form was 250 000 in both the separation techniques used. On the other hand, the apparent relative molecular mass of the minor enzyme form was 450 000 as assessed by gradient gel electrophoresis, and 550 000, when estimated by gel chromatography. The Km values for glycyl-L-proline-4-nitroanilide as substrate with the major and minor forms of the serum enzyme were 1.60 +/- 0.39 X 10(-4) mol/l and 1.60 +/- 0.13 X 10(-4) mol/l, respectively. Our results indicate that the dipeptidyl peptidase IV in normal human serum is a heterogeneous enzyme as far as its charge and molecular size are concerned.  相似文献   

12.
1. DNA polymerase from nuclear and supernatant fractions of cultured mouse L929 cells was fractionated on columns of Sephadex G-200, Sepharose 4B and of DEAE-cellulose. Several peaks of activity are found on Sephadex chromatography and the distribution of activity between these depends on: (a) the source of the enzyme, i.e. nuclear or supernatant fraction; (b) the mode of extraction of the enzyme from the nucleus; (c) the amount of enzyme applied to the column. 2. The DNA polymerase activity in the lower-molecular-weight peaks (approximate molecular weights are 35000, 70000 and 140000) is firmly bound within the cell nucleus and shows a preference for native DNA as template, whereas the high-molecular-weight peak (peak I, molecular weight 250000 or greater) is found in supernatant fractions and shows greater activity with a denatured DNA template. 3. During periods of DNA synthesis the high-molecular-weight enzyme becomes more firmly bound within the nucleus. 4. Peak I enzymic activity is relatively unstable and is inhibited by thiol-blocking reagents and deoxycholate, but it is stimulated by univalent cations. 5. Very little endonuclease is present in the polymerase preparations, but a very active exonuclease and nucleoside diphosphokinase are present. On Sephadex chromatography, however, it was shown that the immediate precursors for DNA synthesis, at least by peak I enzyme, are the deoxyribonucleoside triphosphates. 6. Attempts to decrease the molecular weight of the peak I enzyme while still retaining activity failed.  相似文献   

13.
Highly purfied beta-galactosidase from fungus Curvularia inaequalis cultural fluid with a specific activity of 50 units per mg of protein was obtained by 2-fold purification of the enzyme, using chromatography on DEAE-cellulose and on hydroxylapatite. The enzyme was found to hydrolyze o-nitrophenyl-beta-D-galactopyranoside (pH optimum of 3.7--4.5) and lactose (pH optimum 3.9--5.3). The isoelectric point was observed at pH 4.4 the temperature optimum was 60 degrees C. The molecular weight (115 000--126 000) and the amino acid composition of the enzyme were determined. Km values for o-nitrophenyl-beta-D-galactopyranoside and lactose were 0.55-10(-3) M and 4.5-10(-3) M respectively. Disc-electrophoresis in polyacrylamide gel revealed a single band with a specific activity. The homogeneity of the enzyme was found in ultracentrifuge.  相似文献   

14.
Two procedures are reported for the purification of lysyl hydroxylase, both procedures involving (NH4)2SO4 fractionation, affinity chromatography on concanavalin A-agarose and elution of the column with ethylene glycol. The additional steps in procedure A consist of gel filtration and chromatography on a hydroxyapatite column, and in procedure B of affinity chromatography on collagen linked to agarose and gel filtration. The best preparations obtained with either of the two procedures were pure when examined by sodium dodecyl sulphate-polyacrylamide-disc-gel or slab-gel electrophoresis, but about half of the preparations obtained by procedure A had minor contaminants. The specific activity of a typical preparation purified by procedure B was 13 4000 times that of the 15 000 g supernatant of the chick-embryo homogenate, with a recovery of about 4%. The molecular weight of the pure enzyme was bout 200 000 by gel filtration, and that of the enzyme subunit about 85 000 by sodium dodecyl sulphate/polyacrylamide-disc-gel or slab-gel electrophoresis. It is suggested that the active enzyme is a dimer consisting of only one type of monomer, and that a previously described enzyme form with an apparent molecular weight of about 550 000 is a polymeric form of this dimer. The catalytic-centre activity of the pure enzyme, as determined with a saturating concentration of a synthetic peptide substrate and under conditions specified, was about 3-4 mol/s per mol.  相似文献   

15.
A 23 000-fold purification of porcine fucokinase (ATP:6-deoxy-L-galactose 1-phosphotransferase, EC 2.7.1.52) has been achieved using a combination of ion-exchange, hydrophobic ligand, affinity, hydroxyapatite and molecular sieve chromatography. The enzyme was determined to have a subunit molecular weight of 78 180 +/- 4260 by sodium dodecyl sulfate chromatography and a tetrameric molecular weight of 309 200 +/- 4100 in the active state as determined by molecular sieve chromatography. The enzyme exhibits a single pH optimum at a pH value of 6.5 and gives evidence of a high order of specificity for L-fucose and ATP. The enzyme requires a divalent metal ion and this need is best satisfied by Mg2+. The activity of the enzyme is modified by a number of nucleotides. ADP is an enzyme inhibitor competitive with ATP. GDP-beta-L-fucose is also an inhibitor and appears to compete with L-fucose. GDP-alpha-D-mannose stimulates the enzyme. A possible role for the actions of these nucleotide sugars is discussed.  相似文献   

16.
Ascrobate free-radical reductase (EC 1.6.5.4) from potato tubers was purified to apparent homogencity by a method which included ammonium-sulfate precipitation, gel filtration and chromatography on diethylaminoethyl cellulose and hydroxylapatite. Gel filtration and gel electrophoresis showed that the purified enzyme was monomeric with a molecular weight of about 42 000. Enzyme activity was heat lable and severely inhibited by thiol reagents. The Km values for enzyme substrates were estimated.Abbreviations AFR ascorbate free radical - AsA ascorbic acid - DE-32(52) diethylaminoethyl cellulose - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

17.
The two isozymes of choline acetyltransferase (Acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6) from head ganglia of Loligo pealei have been examined by polyacrylamide gel electrophoresis, gel chromatography, and equilibrium sedimentation in the ultracentrifuge. Inactivating antisera, prepared to both native and dithiothreitol-treated isozymes 1 and 2 of squid choline acetyltransferase, were used to demonstrate the immunologic identity of isozymes 1 and 2. Each isozyme appeared to contain two non-identical catalytically active subunits, with molecular weights of approx. 37 000 and 56 000. A staining method was developed to visualize choline acetyltransferase activity in acrylamide gels. The method is based on the formation of a precipitate of manganese ferrocyanide at sites where free coenzyme A is released. By this method, and by analysis of gel slices, it was found that each of the isozymes can form aggregates of several different sizes. The formation of immune precipitates with the aggregates showed the identity of the multiple bands of enzyme protein resolved on disc gel electrophoresis. Isozyme 1 was most active as a small aggregate, whereas isozyme 2 was most active as a large aggregate. Both chromatography on Sephadex G-200 and isoelectric focusing yielded a number of active species with molecular weights ranging from 35 000 to 300 000. In addition, we demonstrated the dissociation of enzyme protein in the presence of 1.0 - 10(-2) M dithiothreitol, the formation of multiple precipitin bands by aged enzyme, and the identity of the different isoelectric fractions of each of the isozymes.  相似文献   

18.
Sulfite oxidase (sulfite:oxygen oxidoreductase, EC 1.8.3.1) was purified 482-fold from liver of the Pacific hake Merluccius productus. The molecular weight of the enzyme was found to be 120 000 by gel exclusion chromatography on Sephadex G-100. Electrophoretic analysis on sodium dodecyl sulfate (SDS)-polyacrylamide gel revealed that the enzyme was composed of two subunits whose molecular weight was estimated to be 60 000. The pH optimum of the enzyme was 8.7; Ks for sulfite, 2.5 x 10(-5) M; and that for cytochrome c, 3.6 x 10(-7) M. The enzyme elicited an EPR signal at g = 1.97 characteristic of pentavalent molybdenum. Colorimetric analysis also disclosed that the enzyme contained 2 mol each of heme and molybdenum per mol of protein. This fish liver homogenate in isotonic sucrose solution was fractionated by differential centrifugation into nuclei, mitochondria, microsomes and supernatant (100 000 X g). The major portion of sulfite oxidase activity was found in mitochondria. The sulfite oxidase activity was markedly high in liver and kidney, as compared with that in heart, spleen, muscle, gill and eye.  相似文献   

19.
A cyclic AMP dependent protein kinase (EC 2.7.1.37) from sea urchin sperm as purified to near homogeneity and characterized. A 68-fold purification of the enzyme was obtained. This preparation had a specific activity of 389 000 units/mg protein with protamine as the substrate. On the basis of the purification required, it may be calculated that the protein kinase constitutes as much as 1.5% of the soluble protein in sperm. There appeared to be a single form of the enzyme in sea urchin sperm, based on the behavior of the enzyme during DEAE-cellulose and Sephadex G-200 column chromatography. Magnesium ion was required for enzyme activity. The rate of phosphorylation of protamine was stimulated 2.5-fold by an optimal concentration of 0.9 M NaCl. The Km for ATP (minus cyclic AMP) was 0.119 +/- 0.013 (S.D.) and 0.055 mM +/- 0.009 (S.D.) in the presence of cyclic AMP. The specificity of the enzyme toward protein acceptors, in decreasing order of phosphorylation, was found to be histone f1 protamine, histone f2b, histone f3 and histone f2a; casein and phosvitin were not phosphorylated. The holoenzyme was found to have an apparent molecular weight of 230 000 by Sephadex G-200 chromatography. In the presence of 5 - 10(-6) M cyclic AMP, the holoenzyme was dissociated on Sephadex G-200 to a regulatory subunit of molecular weight 165 000 and a catalytic subunit of Mr 73 000. The dissociation could also be demonstrated by disc gel electrophoresis in the presence and absence of cyclic AMP.  相似文献   

20.
Apurinic acid endonuclease activity from mouse epidermal cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
An endonuclease activity making single-strand breaks into depurinated and alkylated DNA has been purified 500-fold from carcinogen-transformed mouse epidermal cells. The enzyme was active only at apurinic/apyrimidinic sites, regardless of whether they were produced by heating at an acidic pH or by alkylation with the ultimate carcinogen MeSO2OMe. The enzyme did not act on native DNA nor on ultraviolet-induced pyrimidine-dimers nor on steric distortions caused by modification of DNA with the carcinogen (Ac)2ONFln. The enzyme was active in the presence of 1 mM EDTA; however, at pH 7.4 optimal conditions were: 6mM MgCl2 and 40--120 mM KCl or 10--40 mM potassium phosphate. The enzyme eluted from hydroxyapatite, phosphocellulose and heparin-cellulose between 100--250 mM potassium phosphate but did not bind to DEAE-cellulose. Using four chromatographic steps the endonuclease was obtained free of exonuclease, demethylase and DNA glycosylase activity specific for DNA bases methylated with MeSO2OMe or MeNOUr. The molecular weight was 31 000 +/- 3000 as calculated from the diffusion coefficient (8.2 x 10-7 cm2/s) and the sedimentation value (2.7 S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号