首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hagey LR  Iida T  Ogawa S  Adachi Y  Une M  Mushiake K  Maekawa M  Shimada M  Mano N  Hofmann AF 《Steroids》2011,76(10-11):1126-1135
Three C(27) bile acids were found to be major biliary bile acids in the capuchinbird (Perissocephalus tricolor) and bare-throated bellbird (Procnias nudicollis), both members of the Cotingidae family of the order Passeriformes. The individual bile acids were isolated by preparative RP-HPLC, and their structures were established by RP-HPLC, LC/ESI-MS/MS and NMR as well as by a comparison of their chromatographic properties with those of authentic reference standards of their 12α-hydroxy derivatives. The most abundant bile acid present in the capuchinbird bile was the taurine conjugate of C(27) (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid, a diastereomer not previously identified as a natural bile acid. The four diastereomers of taurine-conjugated (24ξ,25ξ)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid could be distinguished by NMR and were resolved by RP-HPLC. The RRT of the diastereomers (with taurocholic acid as 1.0) were found to be increased in the following order: (24R,25R)<(24S,25R)<(24S,25S)<(24R,25S). Two epimers (25R and 25S) of C(27) 3α,7α-dihydroxy-5β-cholestan-27-oic acid were also present (as the taurine conjugates) in both bird species. Epimers of the two compounds could be distinguished by their NMR spectra and resolved by RP-HPLC with the (25S)-epimer eluting before the (25R)-epimer. Characterization of the taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid should facilitate their detection in peroxisomal disease and inborn errors of bile acid biosynthesis.  相似文献   

2.
This paper describes three simple and short methods for the conversion of cholic acid into cholylaldehyde with protected hydroxyl groups. The first method involves lithium aluminum hydride reduction of the tetrahydropyranyl ether of methyl cholate and oxidation of the resulting primary alcohol with pyridinium chlorochromate. The second method employs diborane for the reduction of the -COOH group to the -CH2OH group, while the third method involves the reduction of 3α, 7α, 12α -triformyloxy-5β -cholan-24-oic acid (as the acid chloride) directly into 3α, 7α, 12α -triformyloxy-5β -cholan-24-al with TMA-ferride (tetramethylammonium hydridoirontetracarbonyl). The aldehyde obtained by any of the above methods underwent smooth Reformatsky reaction with ethyl α -bromopropionate to yield 3α, 7α, 12α, 24ξ -tetrahydroxy-5β -cholestan-26-oic acid.  相似文献   

3.
The quantitative significance of the metabolism of 3β, 7α-dihydroxy-5-cholen-24-oic acid to chenodeoxycholic acid was evaluated in the hamster. A precursor-product relationship was established in this species by the finding that intravenous administration to an animal previously given cholesterol-4-14C caused a significant reduction in the specific activity of chenodeoxycholic acid. Administration of 12.9 μmole of the precursor was followed by a 10-fold increase in chenodeoxycholic acid excretion although the predominant excretory pathway was via biliary excretion as a monosulfate. The data indicate that synthesis of bile acid from cholesterol via the intermediate 3β, 7α-dihydroxy-5-cholen-24-oic acid can be a quantitatively important pathway.  相似文献   

4.
A short and efficient method for the stereospecific synthesis of 3α,7α-dihydroxy-5β-androstan-17-one was accomplished from the readily available 4-androstene-3,17-dione. Key steps are the stereospecific and selective epoxidation of 4,6-androstadiene-3,17-dione, followed by hydrogenations with carefully selected reagents, solvents and reaction conditions.  相似文献   

5.
The synthesis of labeled and non-labeled 3β,15α-dihydroxy-5-pregnen-20-one (V) and 3β, 15α-dihydroxy-5-androsten-17-one (XI) is described. Treatment of 15α-hydroxy-4-pregnene-3,20-dione (I) with acetic anhydride and acetyl chloride gave 3,15α-diacetoxy-3,5-pregnadien-20-one (II). The enol acetate (II) was ketalized by a modification of the general procedure to yield 3,15α-diacetoxy-3,5-pregnadien-20-one cyclic ethylene ketal (III) which was then reduced with NaBH4 and LiAlH4 to give 3β, 15α-dihydroxy-5-pregnen-20-one cyclic ethylene ketal (IV). Cleavage of the ketal group of IV gave V. Similarly, XI was prepared by starting with 15α-hydroxy-4-androstene-3,17-dione (VII). The (4-14C)-3β,15α-dihydroxy-5-pregnen-20-one was prepared by a modification of the above procedure in that the enol acetate (II)was directly reduced with NaBH4 and LiAlH4 to yield 5-pregnene-3β,15α,20β-triol (XIII) which was then oxidized enzymatically with 20β-hydroxysteroid dehydrogenase to V.  相似文献   

6.
Richmond V  Garrido Santos GA  Murray AP  Maier MS 《Steroids》2011,76(10-11):1160-1165
Disodium 2β,3α-dihydroxy-5α-cholestan-6-one disulfate (8) has been synthesized using cholesterol (1) as starting material. Sulfation was performed using trimethylamine-sulfur trioxide complex in dimethylformamide as the sulfating agent. The acetylcholinesterase inhibitory activity of compound 8 was evaluated and compared to that of disodium 2β,3α-dihydroxy-5α-cholestane disulfate (10) and diols 7 and 9. Compounds 8 and 10 were active with IC(50) values of 14.59 and 59.65 μM, respectively. Diols 7 and 9 showed no inhibitory activity (IC(50)>500 μM).  相似文献   

7.
In order to find an artificial internal standard compound for quantitative determination of bile acids by gas chromatography, 7α,12α-,7α, 12β-, 7β,12α- and 7β,12β-dihydroxy-5β-cholan-24-oic acids were chemically synthesized with cholic acid (1) as the first starting material. The gas chromatographie retention time of 7β,12β-dihydroxy-5β-cholan-24-oic acid (ββ-isomer) was more different from that of natural bile acids than the other isomers. Moreover, ββ-isomer was extracted in the same fraction as the bile acids from urine, and no urinary substance had the same retention time as ββ-isomer. No artifact was produced from ββ-isomer during the analysis procedure. It was concluded that the ββ-isomer is an internal standard compound with certain advantages for the quantitative determination of bile acids in urine by gas chromatography, irrespective of the recovery rate during the analysis procedure.  相似文献   

8.
Within our efforts in the discovery of novel potent and selective ligands for the FXR receptor, 23-N-(carbocinnamyloxy)-3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-amine was synthesized and evaluated for its ability to activate and modulate the biological response of the receptor. Alphascreen and RT-PCR revealed that the 6α-ethyl-24-norcholanyl-23-amine derivate behaves as full FXR agonist endowed with high binding affinity and efficacy, representing a promising lead candidate for further optimization. In addition, docking studies provide new insights into the molecular basis governing the partial and full agonist activity at FXR.  相似文献   

9.
The (25R)- and (25S)-epimers of C27 3α,7α,12α-trihydroxy-5α-cholestan-27-oic acid as well as their corresponding N-acylamidate conjugates with glycine or taurine were prepared starting from cholic acid in 14 steps. The principal reactions involved were (1) reduction of a key intermediary C24allo-cholic acid performate with NaBH4/triethylamine/ethyl chloroformate, (2) iodination of the resulting 3,7,12-triformyloxy-5α-cholan-24-ol with I2/triphenylphosphine; (3) nucleophilic substitution of the iodo derivative with diethylmethyl malonate/NaH; and (4) hydrolysis of the resulting 3,7,12-triformyloxy-25-methyl-26,27-diethyl ester with KOH, followed by decarboxylation of the geminal dicarboxylic acid with LiCl. N-Acylamidation of the resulting (25R)/(25S)-3α,7α,12α-trihydroxy-5α-cholestan-27-oic acid mixture with glycine or taurine afforded the corresponding epimeric mixtures of the glycine and taurine conjugates. The (25R)- and (25S)-epimers of the three variants of unconjugated and conjugated 3α,7α,12α-trihydroxy-5α-cholestan-27-oic acid were efficiently separated by HPLC on a reversed-phase C18 column and their structural characteristics, particularly the chiral center at C-25, delineated using 1H and 13C NMR. These synthetic compounds should be useful as authentic reference standards for establishing their presence in bile as well as being useful in studies on the biosynthesis of allo-bile acids from cholesterol.  相似文献   

10.
Nonappa  Uday Maitra 《Steroids》2010,75(7):506-512
Synthesis, aggregation behavior and in vitro cholesterol solubilization studies of 16-epi-pythocholic acid (3α,12α,16β-trihydroxy-5β-cholan-24-oic acid, EPCA) are reported. The synthesis of this unnatural epimer of pythocholic acid (3α,12α,16α-trihydroxy-5β-cholan-24-oic acid, PCA) involves a series of simple and selective chemical transformations with an overall yield of 21% starting from readily available cholic acid (CA). The critical micellar concentration (CMC) of 16-epi-pythocholate in aqueous media was determined using pyrene as a fluorescent probe. In vitro cholesterol solubilization ability was evaluated using anhydrous cholesterol and results were compared with those of other natural di- and trihydroxy bile acids. These studies showed that 16-epi-pythocholic acid (16β-hydroxy-deoxycholic acid) behaves similar to cholic acid (CA) and avicholic acid (3α,7α,16α-trihydroxy-5β-cholan-24-oic acid, ACA) in its aggregation behavior and cholesterol dissolution properties.  相似文献   

11.
The inhibition of the mitochondrial hydroxylation of 5β-cholestane-3α, 7α, 12α-triol at the 26 position by a CO:O2 gas mixture was maximally reversed by monochromatic light at the wavelength of 450 nm. This establishes the involvement of a cytochrome P450 dependent monooxygenase in the 26-hydroxylation of 5β-cholestane-3α, 7α, 12α-triol in rat liver mitochondria.  相似文献   

12.
It is commonly believed that all membrane sterols are rigid all-trans ring systems with a fully extended alkyl side-chain and that they similarly influence phospholipid bilayer physical properties. Here, we report the sterol concentration-dependent, thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two similar 5α-H sterols with different functional group orientations (3α-OH or 3β-OH), which adopt an ideal all-trans planar ring conformation but lack the deformed ring B conformation of cholesterol (Chol) and epicholesterol (Echol), using differential scanning calorimetry (DSC). Our deconvolution of the DSC main phase transition endotherms show differences in the proportions of sterol-poor (sharp) and sterol-rich (broad) domains in the DPPC bilayer with increasing sterol concentration, which delineate gel/liquid-crystalline (Pβ′/Lα) and disordered gel (Lβ)/liquid-ordered (lo) phase regions. There are similarities in the DPPC main phase transition temperature, cooperativity and enthalpy for each 3β-ol and 3α-ol pair with increasing sterol concentration and differences in the parameters obtained for both the sterol-poor and sterol-rich regions. The sterol-poor domain persists over a greater concentration range in both 3α-ol/DPPC mixtures, suggesting that either those domains are more stable in the 3α-ols or that those sterols are less miscible in the sterol-rich domain. Corresponding parameters for the sterol-rich domain show that at sterol concentrations up to 20 mol%, the 5α-H,3β-ol is more effective at reducing the phase transition enthalpy of the broad component () than Chol, but is less effective at higher concentrations. Although mixtures containing Echol and 5α-cholestan-3α-ol have similar positive slopes below 7 mol% sterol, suggesting that they abolish the Lβ/lo phase transition equally effectively at low concentrations, Echol is more effective than the saturated 3α-ol at higher sterol concentrations. A comparison of obtained for the saturated and unsaturated pairs suggests that the latter sterols stabilize the lo phase and broaden and abolish the DPPC main phase transition more effectively than the saturated sterols at physiologically relevant concentrations, supporting the idea that the double bond of Chol and Echol promotes greater sterol miscibility and the formation of lo phase lipid bilayers relative to corresponding saturated sterols in biological membranes.  相似文献   

13.
Datura meteloides; plants were fed with tiglic acid-[-14C] via the roots and after 2 days the percentage incorporation into the alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane, meteloidine and 3α,6β-ditigloyloxytropan-7β-ol were 15·2, 1·82, 2·2 and 1·8 respectively. 3α,6β-Ditigloyloxytropane was partially hydrolysed to 6β-hydroxy-3α-tigloyloxytropane which contained 58·1% of the radioactivity of the original base, whereas 3α,6β-ditigloyloxytropan-7β-ol gave meteloidine containing only 9·2% of the original activity. The results suggest that the di- and tri-hydroxytropanes may be formed by different routes.  相似文献   

14.
This study has identified the polar metabolites of 5α-androstane-3β, 17β-diol(3β-diol) produced by the canine prostate. The major metabolite is 5α-androstane-3β, 7α, 17β-triol (7α-triol) accounting for approximately 80% of the total polar metabolites of 3β-diol. The remaining 20% is accounted for exclusively by another triol, 5α-androstane-3β, 6α, 17β-triol(6α-triol). This study has also characterized two enzymatic hydroxylases responsible for respective triol formation: 5α-androstane-3β, 17β-diol 6α-hydroxylase (6α-hydroxylase) and 5α-androstane-3β, 17β-diol 7α-hydroxylase (7α-hydroxylase). Both of these irreversible hydroxylases are located in the particulate fraction of the prostate and can utilize either NADH or NADPH as cofactor. Several in vitro steroid inhibitors of these hydroxylases were identified including cholesterol, estradiol and diethylstilbestrol. Neither of the hydroxylases were found to be decreased by castration (3 months) when expressed as activity/DNA. Using a variety of C19 androstane substrates, 6α- and 7α-triol were found to be major components of the total 3β-hydroxy-5α-androstane metabolites produced by the canine prostate.  相似文献   

15.
We report here our differential scanning calorimetry measurements investigating the thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two saturated sterols with different ring configurations (5β-H and either 3α-OH or 3β-OH). These measurements differ in the proportions of sharp and broad components in the heating endotherms, representing the melting of the sterol-poor and sterol-rich lipid micro-domains of the DPPC bilayer, respectively. Our results suggest that the 5,10-cis ring configuration of both saturated sterols and the ring A conformations have the greatest influence on DPPC bilayer properties, most likely by inducing small increases in the mean area/molecule as compared to cholesterol. However, the C3-OH orientation also influences sterol miscibility, likely due to variations in the strength and number of interfacial H-bonds with changes in molecular area, which in turn probably reflect the depth of the sterol in the DPPC bilayer. This influence of C3-OH orientation is significantly greater than was observed in our earlier study of cholesterol/- and epicholesterol/DPPC mixtures. Overall, our results show that both saturated and unsaturated 3α-ols are less miscible than the corresponding 3β-ols, but that the presence of a Δ5 double bond can improve the sterol miscibility in the DPPC bilayer at high sterol concentrations.  相似文献   

16.
Sertoli cells from 17 day old rats convert progesterone to 20α-hydroxy-pregn-4-en-3-one and pregnenolone to 3β,20α-dihydroxy-5α-pregnane after 72 hours in vitro. The metabolites were identified by several systems of thin layer and gas chromatography, derivative formation and crystallization with authentic steroids. The production of 20α-hydroxy-pregn-4-en-3-one and 3β,20α-dihydroxy-5α-pregnane amounted to 1380 and 740 pmoles/h/mg protein which can account for the total amounts of these steroids reported in the testis. It is the first direct evidence that Sertoli cells can metabolize progesterone and pregnenolone and suggests that Sertoli cells contain the major, if not the only, amounts of 20α-hydroxysteroid dehydrogenase in the immature rat testis.  相似文献   

17.
To determine if the conversion of the intermediate, 3α, 7α, 12α-trihydroxy-5β-cholestan-26-oic acid (THCA), into cholic acid is influenced by taurocholate, two rats were infused intravenously with [3H] THCA until they reached a steady state. Taurocholate was then added and infused at a rate of 1 μmole/min/rat for 48 hours. The percentage of [3H] THCA recovered in the bile did not increase indicating that taurocholate does not suppress the conversion of THCA into cholic acid.  相似文献   

18.
19.
A new synthetic brassinolide analogue, 2,3-dihydroxy-17-(3-methylbutyryloxy)-7-oxa-B-homo-5-androstan-6-one (11), has been shown to exhibit typical brassinolide activity characterised by elongation, swelling, twisting and splitting of the bean second internode. It was prepared from the known lactone 2,3,17-trihydroxy-7-oxa-B-homo-5-androstan-6-one (4) which was transformed to an isopropylidenedioxy derivative. After protection of the 2- and 3-hydroxy groups it yielded the 2,3-isopropylidenedioxy-17-(3-methyl-butyryloxy)-7-oxa-B-homo-5-androstan-6-one (7) on treating with 3-methylbutyryl chloride in pyridine. The analogue with a 2-methylbutyric moiety (10, 2,3-dihydroxy-17-(2-methyl-butyryloxy)-7-oxa-B-homo-5-androstan-6-one) in position 17 stimulated only elongation and swelling of the bean second internode. However, in this bioassay 100 times more 10 or 11 compared to 24-epibrassinolide is required to obtain the same effects. Analogues with -oriented hydroxyl groups at C-2 and C-3 (14,15), a 6-ketone (17,18) or 6-oxa-7-oxo-lactone system (12,13) in ring B lack the typical brassinolide activity. In addition, the active brassinosteroids applied to the second internode stimulated a similar, but 30% lower elongation of the first internode. From data presented here we conclude that the presence of two hydroxy groups in the positions 22 and 23 of the brassinolide side chain, which are considered as a key structural requirement, is not absolutely necessary for a compound to exhibit typical brassinosteroid activity. Nevertheless, these compounds have generally 2–10 times lower activity than that having 22,23-vicinal diol in the side chain.  相似文献   

20.
Natural products are great prototypes for the design of new anticancer agents. The plant-derived natural product 6α,7β-dihydroxyvouacapan-17β-oic acid (1) is promising for the development of more potent antiproliferative agents against human cancer cells. Indeed, its lactone derivative 6α-hydroxyvouacapan-7β,17β-lactone (2), a non-natural furanoditerpene, exhibited higher anticancer activity than compound 1. Herein, we describe the synthesis and antiproliferative activity of six new Mannich derivatives of compound 2 against nine cancer cell lines. Overall, our results revealed that Mannich derivatives 3-8 were more potent than compound 2 in inhibiting the proliferation of cancer cells. Theoretical studies also supported our findings, revealing the nucleophilic character of furan ring as an important feature for antiproliferative activity of the studied Mannich derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号