首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Size-structure dynamics and co-existence of the conifers Abies sachalinensis and Picea glehnii in subalpine forests in Japan, in relation to the understorey dwarf bamboo Sasa, were examined using a simulation model. This model explicitly incorporated recruitment rate, size growth rate and mortality. Recruitment and growth rates were assumed to be suppressed by the cumulative basal area of taller trees and the density of Sasa. As for the one-sided crowding effect, two types of model were examined. The total basal area of the two species suppresses the growth and recruitment rates in an additive model, while the basal area of each species has a separate effect included in a specific model. Two types of recruitment process were examined, i.e. open and closed systems; recruitment rates of open and closed systems are independent of, and proportional to, the basal area of the same species within the plot, respectively. Parameters were estimated from data of plot censuses for four years. The parameters of the specific model showed that recruitment and size growth rates were more suppressed by the same species than the other species. Recruitment of A. sachalinensis was more sensitive to suppression by Sasa compared with P. glehnii. The stationary size structure of the two species, generated from both the models with the open system, fitted well to the observed size structures across various Sasa densities. A. sachalinensis and P. glehnii dominated at lower and higher densities of Sasa, respectively. However, the closed-system simulation showed that the stable co-existence of the two species with a good fit to the observed size structure occurred only in the specific model. These results suggest that within-species interference, which is more severe than between-species interference, is important for the co-existence of the two species and that the relative dominance of the two species readily explained the differential responses to Sasa abundance.  相似文献   

2.
The effects of understory dwarf bamboo (Sasa kurilensis) on soil water and the growth of overstory trees were studied in a dense secondary forest of Betula ermanii in northern Japan. Four plots were established in a Betula ermanii forest with Sasa kurilensis in the understory. The Sasa was removed in two of the plots. The annual increment of the trunk diameter for each tree was measured in the first two years from the commencement of the experiment. Soil water potential was similar in the plots following significant rainfall, but was found to be greater in the plot without Sasa between rainfall events. This suggests that the removal of Sasa slows the reduction of soil water after rainfall. The relative growth rate of the trunk diameter of Betula ermanii increased with tree size in all of the plots because taller trees strongly suppressed smaller ones in the dense forest. The growth rates of Betula ermanii were higher in the plots without Sasa. However, the difference in growth rates between all of the plots tended to be smaller in smaller size classes, possibly because smaller trees were strongly suppressed by larger ones, irrespective of the presence/absence of Sasa. Therefore, the removal of Sasa increased soil water and encouraged the growth of larger Betula ermanii in dense forest during the first two years after the Sasa was removed. The present study suggests that Sasa can reduce the growth of larger Betula ermanii in dense forest by limiting available soil water to these trees.  相似文献   

3.
The effects of dwarf bamboo,Sasa, cover on the initial morrality of hardwood seedlings were investigated by transplanting 1-year-old beech (Fagus crenata) and current-year oak (Quercus mongolica var.grosseserrata) seedling to three different stands; old-growth beech and secondary oak forests withSasa undergrowth, and aSasa grassland in a grassland-forest series near the top of Mt Jippo, southwestern Japan. The most frequent cause of seedling morrality was gnawing of the stems by rodents. In the beech forest, the gnawing was more likely to occur underSasa cover, suggesting that it provides a good habitat for rodents on the beech forest floor. TheSasa under growth may thus play an imporrant role in regeneration of beech forest. In the oak floor, mortality of both species was low and only a little gnawing occurred during a year. However, no natural oak seedling were found in the forest even after a mast year. This may be because most of the acorns disappeated before establishment. The early-stage demography of hardwood seedling as oak may thus play an imporrant role in regeneration of oak forest. In theSasa grassland where the seed supply is small, almost all of the seedlings died fromo gnawing regardless of the presence ofSasa cover. These factors prevent the recruitment of a sizable seedling bank. Rodents may thus play an imporrant role in maintenance of theSasa grassland.  相似文献   

4.
Abstract

We separately examined the temporal patterns of root production by Japanese oak (Quercus crispula) and dwarf bamboo (Sasa veitchii), which is a major understory species in cool temperate forests. We grew Japanese oak seedlings and Sasa stocks (i.e., the rhizome and connected culms) in organic‐free sand in rhizoboxes and then scanned roots that were visible through the sides of the rhizoboxes to measure the length of each root in images. Japanese oak root production peaked in July, but Sasa root production peaked in both July and October. Soil temperature was highly correlated with root production of Japanese oak, but less so with Sasa root. Leaves of Sasa expanded in late summer, and the photosynthetic rate of Sasa was highest in September, suggesting that the aboveground phenology influences the extensive root production of Sasa in October due to the supply of carbohydrate. These results demonstrate different temporal patterns of root production by Japanese oak seedlings and understory species (Sasa), even under similar environmental conditions.  相似文献   

5.
Naoya Wada 《Oecologia》1993,94(3):403-407
The effects of dwarf bamboos (Sasa spp.) on the regeneration of trees in a natural hardwood forest were studied by analysing the spatial dispersion of seedlings and saplings of anemochores (Acer palmatum var. matsumurae, Fraxinus lanuginosa, and Carpinus laxiflora) and zoochores (Quercus mongolica var. grosseserrata and Q. serrata). Relative photosynthetic photon flux density at 10 cm above ground was significantly correlated with the coverage of dwarf bamboos (r=0.661, P<0.001). Seedlings were abundant and were randomly distributed in the anemochores, other than the shade-intolerant species C. laxiflora which was significantly more sparse in sites with dense Sasa than in sites where Sasa was rare. Distribution of saplings was also random in the shadetolerant anemochores A. palmatum var. matsumurae and F. lanuginosa but aggregated in sites with sparse Sasa in the shade-intolerant anemochore C. laxiflora. In contrast to the anemochores, seedlings of zoochores were very few and were distributed in sites with sparse Sasa. Saplings were also aggregated and negatively correlated with Sasa cover in the shade-intolerant species Q. serrata and the tolerant species Q. mongolica var. grosseserrata. The acorns put on the forest floor in a site with dense Sasa were quickly removed by small rodents such as Apodemus speciosus and A. argenteus. Trap census of rodents revealed that those mammals prefer the dense Sasa habitat to the sparse Sasa habitat. This suggests that the dwarf bamboos strongly affect the regeneration of zoochorous trees not only by shading the seedlings but also by providing habitats to acorn-feeding small mammals.  相似文献   

6.
Abstract. Microhabitats for seedling establishment and gap regeneration in subalpine forests of northern Japan were studied for two conifers, Abies sachalinensis and Picea glehnii. The abundance of understorey dwarf bamboo (Sasa spp.) was different for the four plots examined. Two types of micro-habitats were recognized for the two conifers: ground and elevated woody substrates (fallen logs and buttresses). Picea regenerated mostly on elevated sites, while Abies regenerated on both ground and elevated sites. The densities of Picea were independent of those of Sasa, but Abies densities decreased with increasing abundance of Sasa because Sasa reduced regeneration on the ground. Density of Abies on elevated sites was higher than that of Picea, irrespective of Sasa and of the density of adult trees. There was no significant difference in growth in sapling trunk height between the two conifers, but Picea grew more slowly under the canopy than Abies and was aggregated into gaps. Thus, in forests with less Sasa, the recruitment capacity of Abies was greater than that of Picea. The long life span of Picea compensated for its low density on elevated sites. Examination of a dynamic system model showed that Picea was excluded by Abies in forests without Sasa because regeneration on the ground is more advantageous than on elevated sites, but the two conifers could coexist in forests with Sasa because of the increased relative success of regeneration on elevated sites by Picea saplings.  相似文献   

7.
Abstract. The structure and composition of a cool-temperate old-growth beech (Fagus crenata) - dwarf bamboo (Sasa spp.) forest, partially affected by landslide disturbance, in the Daisen Forest Reserve of southwestern Japan, were investigated in relation to forest floor and canopy conditions. All stems ≥ 4 cm DBH were mapped on a 4-ha plot and analyses were made of population structure, spatial distribution and spatial association of major tree species. The dominant species, F. crenata, which had the maximum DBH among the species present, had the highest stem density. However, for other species, larger-sized species had lower stem density with few smaller stems or saplings, while smaller-sized species had higher stem density with many smaller stems or saplings. Canopy trees of F. crenata were distributed randomly in the plot, while its stems in the other layers and all other species were distributed patchily. Small patches represent gap-phase regeneration. Larger patches correlate with landslide disturbance, difference in soil age, or the presence/absence of Sasa. Cluster analysis for spatial associations among species and stems in the different layers revealed that the forest community consists of several groups. One main group was formed on sites not covered with Sasa. This group contained a successional subgroup (from Betula grossa to Acer mono and/or F. crenata) initiated by landslide disturbance and a subgroup of tree species that avoid Sasa. Another group was formed on sites with mature soils covered largely with Sasa. This contained associations of canopy trees of F. crenata and smaller-sized tree species such as Acanthopanax sciadophylloides and Acer japonicum. It is found that the community of this old-growth beech forest is largely organized by natural disturbance and heterogeneous conditions of the forest floor (difference in soil age and presence/absence of Sasa). The existence of these different factors and the different responses of species to them largely contribute to the maintenance of tree species diversity in this forest.; Keywords: Cluster analysis; Fagus crenata; Forest dynamics; Gap; Landslide; Spatial pattern.  相似文献   

8.
Abstract. We examined the response of tree seedling emergence and survival to the dieback of Sasa and canopy gap formation in an old‐growth forest near Lake Towada, northern Japan. Synchronous death of Sasa occurred in 1995. We established four types of sampling sites differing in forest canopy conditions (Closed or Gap) and Sasa status (Dead or Live). Gap‐Dead sites had the highest light levels and the greatest fluctuation in soil temperatures. The death of Sasa alone facilitated the emergence (Acer japonicum, Fagus crenata, Fraxinus lanuginosa, and Tilia japonica) and survival (Acanthopanax sciadophylloides, F. crenata, F. lanuginosa, Kalopanax pictus, and Sorbus commixta) of species with a seedling bank strategy. Cercidiphyllum japonicum grew at all sites at a higher density than other species, but survived well only in Gap‐Dead sites. This behaviour was associated with a seed rain strategy. The additive effects of Sasa death and canopy gap formation promoted seedling emergence of pioneer tree species (Betula maximowicziana, Lindera umbellata, and Magnolia obovata), probably through break of dormancy by the large temperature fluctuation. In addition, the scarcity of advance regeneration in canopy gaps due to Sasa cover facilitates the regeneration of pioneer species. The dominance and dieback cycle of Sasa contributes to species diversity in this forest.  相似文献   

9.
We examined the relationship between fluctuation patterns of groundwater levels (WL) and the distribution dynamics of the vascular plant Sasa palmata, in Sarobetsu Mire, northern Japan. WLs were recorded at 30 stations: 11 Sphagnum lawns, which is the original vegetation type in the area, nine Sasa communities, and ten boundary stations between those two areas. The ten boundary stations were composed of five vegetation change sites and five stable sites, categorized using maps of Sasa distribution in 1977 and 2000. The results showed that Sphagnum lawns and Sasa communities significantly differed in the average, minimum, and fluctuation range of WLs, and increases in WL after rain events. The differences between change sites and stable sites were not significant in the average WL, but were significant in the minimum and fluctuation ranges of WL and the increase in WL after rain events. These results indicate that the distribution dynamics of Sasa communities would be regulated by groundwater flow that was affected by drainage and inflow condition rather than merely groundwater drawdown as suggested in previous studies. The WL regimes at two Sphagnum lawns were similar to those at change sites, suggesting that Sasa may expand into these two stations more readily than the other Sphagnum lawn stations.  相似文献   

10.
Abstract. Question: The aim of the present study is to determine whether seed/seedling predation will increase and Fagus survival will decline with the recovery of the Sasa cover. Methods: We examined Fagus crenata regeneration for seven years in an old‐growth Fagus‐Sasa forest near Lake Towada, northern Japan, by examining the effects of simultaneous death of Sasa, tree canopy gap formation, mast seeding of Fagus and seed and seedling predation by rodents on the survival of Fagus seeds and current year seedlings. We established four types of sites differing in forest canopy (closed or gap) and Sasa status (dead or alive) following the simultaneous flowering and death of Sasa kurilensis (dwarf bamboo) in 1995. Results: Fallen Fagus seed was abundant in 1997 and 2000 (mast years). In sites with alive Sasa, survival from the first growing season was low due to high seed and seedling predation. In sites with dead Sasa, seed survival under the canopy was high for both mast years, but in gaps it varied between years. Seedling survival was highest in canopy gaps with dead Sasa (gap‐dead) in 1998, because of higher light levels and lower predation by rodents. However, seedling survival in these plots was low in 2001, apparently because rapid Sasa recovery favoured rodent predation. In both mast years, Sasa die‐back had significant positive effects on seed and seedling survival under closed canopies because the seedlings there were more successful in escaping predation. Conclusion: The change in successful sites for the early stage of regeneration of Fagus appears to reflect the combined effects of canopy gap, seed/seedling predation and revegetation of Sasa.  相似文献   

11.
Question: Is light available for subcanopy individuals of Fagus crenata spatiotemporally heterogeneous across patches with closed canopies of different foliage phenologies and gaps? Is local abundance of Sasa influenced by the composition of the canopy layer? If so, does the Sasa layer also affect the amount of light available to small F. crenata saplings? Is variation in F. crenata population structure consistent with the hypothesis that light is important? Location: Mt. Kurikoma, Japan 780 m a.s.l. Methods: Population structure of subcanopy individuals of Fagus crenata and importance of Sasa were examined in five patch types. The patch‐types were Fc (F. crenata only in the crown), Qm (Quercus mongolica var. grosseserrata only in the crown), Mo (Magnolia obovata only in the crown), Fc’ (periphery of F. crenata) and Gap. Seasonal changes in light availability above and below the Sasa layer was examined by using hemispherical photographs and quantum sensors. Results: Subcanopy individuals of F. crenata began unfolding their leaves approximately one month earlier than canopy trees of Q. mongolica var. grosseserrata and M. obovata, but a few days later than those of adult F. crenata. Accumulated photosynthetic photon flux density above the Sasa layer was greatest in Qm and Mo, and lowest in Fc. Importance of Sasa was highest in Gap. Maximum height and the number of subcanopy individuals of F. crenata were greatest in Qm, followed by Mo, and lowest in Fc. Conclusions: Differences in canopy layer composition probably influence the regeneration of F. crenata both directly through their foliage phenologies, and also indirectly by determining the importance of Sasa.  相似文献   

12.
Seedling recruitment and survivorship of beech (Fagus crenata) were studied with special reference to the simultaneous death of undergrowing bamboo (Sasa kurilensis). The survival rate of beech seedlings on the floor whereSasa had withered was much higher than that on the floor whereSasa survived. Damping off caused the largest mortality among beech seedlings. However, the allocation pattern of matter to different parts of the seedlings indicated that their survival was greatly affected by production economy. The dense cover of dwarf bamboo prevented the establishment of beech seedling banks on the forest floor. The interval between the times when simultaneous death ofSasa occur and the length of its recovery period are thus important factors controlling the dynamics of beech forests in Japan.  相似文献   

13.
We estimated the effect of invading Sasa vegetation and accelerated terrestrialization on the microbial community structure in Sarobetsu-genya wetland (SGW) and Nakanominedaira wetland (NW) (original vegetation, Sphagnum). All examined peat-pore water samples were acidic. Electrical conductivity significantly differed between SGW and NW. Nonmetric multidimensional scaling (NMDS) and analysis of similarity based on denaturing gradient gel electrophoresis (DGGE) band patterns revealed differences in the bacterial community structure between the Sasa and Sphagnum vegetations at a depth of 10 cm in NW. In contrast, the bacterial NMDS profiles at all depths differed between the 2 wetlands rather than between the 2 vegetations. The archaeal community structure significantly differed between the wetlands at depths of 30 and 50 cm. The bacterial diversity index derived from the DGGE profiles significantly differed between the wetlands at all depths. The archaeal diversity index significantly differed between the wetlands at a depth of 50 cm. Sasa invasion affected the microbial community structure in the rhizosphere, up to a depth of 10 cm; this effect differed with the terrestrialization speed. These results suggest that in peat bogs subjected to artificially accelerated terrestrialization, the microbial community changes before the occurrence of the natural hydrarch ecological succession involving ground vegetation.  相似文献   

14.
The relationship between rain flow into the soil and forest structure was investigated in a dense deciduous Betula ermanii forest in northern Japan. The forest floor was covered with dwarf bamboo Sasa kurilensis. Observation was conducted from mid-July to late October in 1998. Leaf fall of Betula started in early September and ended in late October. Stemflow was proportional to rainfall and tree size [diameter at breast height (DBH)], and for the same rainfall, stemflow increased with leaf fall. On the contrary, throughfall decreased with leaf fall. Throughfall was intercepted also by Sasa in proportion to its leaf area. Multiple linear regression analysis revealed that stemflow and throughfall of Betula and Sasa were predictable as functions of rainfall and forest structural characteristics, such as DBH, tree density, and stand leaf mass. The rain interception by plants tended to decrease from summer to autumn, but the difference in the interception was about 2% between July (fully expanded leaves) and late October (lack of leaves). About 96 and 87% of rainfall reached the above- and below-Sasa layers, respectively. Thus, this study showed that understory Sasa is a major component of rain interception within the stand and that rain flow into the soil can be estimated by using rainfall and the forest structural parameters, such as DBH, tree density and stand leaf mass.  相似文献   

15.
We measured the vertical distribution and seasonal patterns of fine-root production and mortality using minirhizotrons in a cool–temperate forest in northern Japan mainly dominated by Mongolian oak (Quercus crispula) and covered with a dense understory of dwarf bamboo (Sasa senanensis). We also investigated the vertical distribution of the fine-root biomass using soil coring. We also measured environmental factors such as air and soil temperature, soil moisture and leaf area indices (LAI) of trees and the understory Sasa canopy for comparison with the fine-root dynamics. Fine-root biomass to a depth of 60 cm in September 2003 totaled 774 g m−2, of which 71% was accounted for by Sasa and 60% was concentrated in the surface soil layer (0–15 cm), indicating that understory Sasa was an important component of the fine-root biomass in this ecosystem. Fine-root production increased in late summer (August) when soil temperatures were high, suggesting that temperature partially controls the seasonality of fine-root production. In addition, monthly fine-root production was significantly related to Sasa LAI (P<0.001), suggesting that fine-root production was also affected by the specific phenology of Sasa. Fine-root mortality was relatively constant throughout the year. Fine-root production, mortality, and turnover rates were highest in the surface soil (0–15 cm) and decreased with increasing soil depth. Turnover rates of production and mortality in the surface soil were 1.7 year−1 and 1.1 year−1, respectively.  相似文献   

16.
To evaluate the effect of understory dwarf bamboo (Sasa senanensis) on soil respiration in forest ecosystems, we compared soil respiration rates between four deciduous broad-leaved forest sites representing two levels of understory Sasa (with and without) and two levels of forest stand age (50-year-old stand and 1-year-old stand after clearcut). The understory Sasa enhances the soil respiration rate both before and after the clearcutting of deciduous broad-leaved forest. The Sasa sites had larger total belowground biomass compared with the non-Sasa sites, which could be attributed to Sasa presence. Our results also suggest that clearcutting decreases temperature-normalized soil respiration rates (R 15) and temperature sensitivity (Q 10) in both Sasa and non-Sasa ecosystems. Clearcutting significantly reduced the fine root biomass of trees and Sasa. The fine roots of trees and Sasa had high specific respiration rates compared with larger roots and rhizomes at Sasa and non-Sasa sites, respectively. Therefore, we hypothesize that the loss of fine roots after clearcutting is responsible for the reduction in soil respiration rate. A comparison with other studies revealed a positive linear relationship between total (tree and Sasa) fine root biomass and R 15, suggesting that fine root biomass controls soil respiration at the landscape scale. The Q 10 value is also likely to be related to fine root biomass, although the relationship was not significant. We conclude that understory Sasa increases belowground biomass, especially fine roots, and the spatial variation in soil respiration at the landscape scale.  相似文献   

17.
Sequences from two mitochondrial genes (cytochrome b and NADH1) were used to produce a molecular phylogeny for 12 named and two undescribed species of the genus Oligoryzomys. All analyses placed Oligoryzomys microtis as the most basal taxon, a finding consistent with previous studies that suggested the west‐central Amazon as a centre of origin for the tribe Oryzomyini to which Oligoryzomys belongs. Biogeographically, this suggests that Oligoryzomys had a South American origin, and later advanced northwards, entering Central America and Mexico more recently. Different analyses have provided consistent support for several additional clades that did not necessarily agree with the species groups hypothesized by previous studies. A molecular clock derived for these data suggests an origin for the genus of 6.67 Mya, with most speciation within the genus occurring between 3.7 and 1.5 Mya. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 551–566.  相似文献   

18.
Post-fire vegetation regeneration was studied for a 6-year period in a 13-year-old-artificial forest consisting of Larix kaempferi with a dense undergrowth of Sasa senanensis. The study site was classified into three fire severity categories according to the degree of Sasa senanensis scorching, that is, a high-severity category, a mid-severity category, and a low-severity category. Study plots were established in areas which fitted the criteria for each category, and in nearby unburned sites. A total of 41 woody species were newly emerged during the 6-year study period in the burned and unburned plots. Only a few seedlings and resprouts emerged in the unburned plots, while many seedlings emerged in the high-severity plots from the first year after fire onward. A high-severity fire that burns the rhizomes of Sasa is necessary for the vegetation recovery by germination of seed. Whereas the establishment of seedlings was restricted to a few years after fire, the regeneration through resprouting continued into the last year of observation. The survival time of resprouts was longer than that of seedlings, and the survival time of shade-tolerant species was longer than that of shade-intolerant species. In contrast, shade-intolerant species grew more rapidly than shade-tolerant species. The plants ability to exceed the maximum height of the Sasa before the bamboo recovers can be critical to the survival of shade-intolerant species. Because resprouts have a stronger resistance to the shade of Sasa than seedlings, the resprouts of shade-tolerant species play a major role in the re-establishment of woody species after fire in sites with considerable Sasa ground-cover.  相似文献   

19.
中国紫金牛属的分支分类学研究   总被引:2,自引:0,他引:2  
基于60个形态学性状,对中国广义报春花科(Primulaceae s.l.)紫金牛属(Ardisia)90个分类群的系统发育关系运用分支分析方法进行了分析。采用最简约性分析得到了100个同等简约树。50%多数规则一致树的分支结构与以前建立的紫金牛亚属划分系统基本一致。外类群酸藤子属、铁仔属、密花树属聚在分支树的最基部,紫金牛属为一单系类群。形态分支树的一致性指数和保持性指数和各分支内部支持率均较低,只在种与变种或亚种之间获得较高的支持率。高木亚属、腋序亚属、短序亚属、顶序亚属处于分支树较为基部的位置,推测这四个亚属的类群在紫金牛属中较为原始;圆齿亚属和锯齿亚属共同组成一大支,二者亲缘关系紧密,推测这两个亚属为该属中最为进化的类群。结合形态学对属内系统发育关系进行了讨论和推测了一些性状的演化趋势,以期为分类修订提供依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号