首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5α-Androstane-3α, 16α 17β-triol was synthesized from 3β-hy-droxy-5-androsten-17-one. The procedure Involved catalytic hydrogenation of 3β-hydroxy-5-androsten-17-one to 3β-hydroxy-5α-androstan-17-one. This was followed by conversion of the 3β-hydroxy group to 3α-benzoyloxy group by the Mitsunobu reaction. Further treatment with isopropenyl acetate yielded 5α-androsten-16-ene-3α, 17-diol 3-benzoate 17-acetate. This was then converted to 3α, 17-dihydroxy-5α-androstan-16-one 3-benzoate 17-acetate via the unstable epoxide intermediate after treatment with m-cloroperoxybenzoic acid. LiAlH4 reduction of this compound formed 5α-androstane-3α, 16α, 17β-trlol. 1H and 13C NMR of various steroids are presented to confirm the structure of this compound.  相似文献   

2.
Mechanistic studies on C-19 demethylation in oestrogen biosynthesis   总被引:9,自引:1,他引:8       下载免费PDF全文
Mechanistic aspects of the biosynthesis of oestrogen have been studied with a microsomal preparation from full-term human placenta. The overall transformation, termed the aromatization process, involves three steps using O2 and NADPH, in which the C-19 methyl group of an androgen is oxidised to formic acid with concomitant production of the aromatic ring of oestrogen: [Formula: see text] To study the mechanism of this process in terms of the involvement of the oxygen atoms, a number of labelled precursors were synthesized. Notable amongst these were 19-hydroxy-4-androstene-3,17-dione (II) and 19-oxo-4-androstene-3,17-dione (IV) in which the C-19 was labelled with 2H in addition to 18O. In order to follow the fate of the labelled atoms at C-19 of (II) and (IV) during the aromatization, the formic acid released from C-19 was benzylated and analysed by mass spectrometry. Experimental procedures were devised to minimize the exchange of oxygen atoms in substrates and product with oxygens of the medium. In the conversion of the 19-[18O] compounds of types (II) and (IV) into 3-hydroxy-1,3,5-(10)-oestratriene-17-one (V, oestrone), it was found that the formic acid from C-19 retained the original substrate oxygen. When the equivalent 16O substrates were aromatized under 18O2, the formic acid from both substrates contained one atom of 18O. It is argued that in the conversion of the 19-hydroxy compound (II) into the 19-oxo compound (IV), the C-19 oxygen of the former remains intact and that one atom of oxygen from O2 is incorporated into formic acid during the conversion of the 19-oxo compound (IV) into oestrogen. This conclusion was further substantiated by demonstrating that in the aromatization of 4-androstene-3,17-dione (I), both the oxygen atoms in the formic acid originated from molecular oxygen. 10β-Hydroxy-4-oestrene-3,17-dione formate, a possible intermediate in the aromatization, was synthesized and shown not to be converted into oestrogen. In the light of the cumulative evidence available to date, stereochemical aspects of the conversion of the 19-hydroxy compound (II) into the 19-oxo compound (IV), and mechanistic features of the C-10–C-19 bond cleavage step during the conversion of the 19-oxo compound (IV) into oestrogen are discussed.  相似文献   

3.
[2H]Steviol (ent-13-hydroxykaur-16-en-19-oic acid) was synthesized from steviol acetate norketone (ent-13-acetoxy-16-oxo-17-norkauran-19-oic acid) by the Wittig reaction using (methyl-d3)triphenylphosphonium bromide. A mixture of steviol analogs was produced containing from one to four 2H/molecule. [2H]Steviol was fed to strain LM-45-399 of the fungus Gibberella fujikuroi which was grown on synthetic medium (ICI, 0% N) in the presence of the growth retardant CCC. [2H]GA1, [2H]GA18, [2H]GA23 and [2H]GA53 were isolated from the fungal medium after 4 days. This strain converted steviol to 13-hydroxy GAs in the highest yields of the four Gibberella strains tested, and in amounts suitable for metabolic studies with higher plants.  相似文献   

4.
The complexation of the sodium salt of sulfonated morin (H5SM) with Fe2+ was studied by potentiometric titration as was its deprotonation. Only four of the five hydroxy groups were deprotonated under the conditions employed. The associated pKa values are 3.80, 7.47, 9.24 and 11.48. Analysis of the titration data suggests formation of (H3SM)Fe, (H2SM)Fe2−, (HSM)Fe3− and (HSM)2Fe8−. Log β values (based on HSM5− as the ligand species) are 24.8, 16.1, 7.1 and 11.6, respectively. Theoretical calculations predict that the 7-hydroxy group is deprotonated first followed closely by the 3-hydroxy position. Deprotonation of the 2′-hydroxy group results in proton migration from the 3-hydroxy oxygen atom. These calculations along with previous results suggest that chelation of the metal ion likely occurs at the 3-hydroxy-4-keto site.  相似文献   

5.
General syntheses of saturated and unsaturated fatty acids, specifically trideuterated at the terminal carbon or dideuterated at the penultimate carbon, from ω-hydroxy esters, have been developed. Methyl [16-2H3]hexadecanoate was synthesized from methyl 16-hydroxyhexadecanoate. The hydroxyl group was protected as the tetrahydropyranyl ether and the ester group reduced with lithium aluminum deuteride, first to an alcohol and then, by way of the derived mesylate, to a trideuteromethyl group. The new ester group was formed by oxidation of the hydroxyl group. Methyl 16-hydroxy[2-2H2]hexadecanoate was prepared, from 16-hydroxy-hexadecanoate, by exchange of the α protons and, by the reductive route above, with lithium aluminum hydride, gave methyl [15-2H2]hexadecanoate. Methyl 16-hydroxy-7-hexadecynoate was synthesized from 6-chlorohexanol and was converted, by means of the above reactions, to methyl [16-2H3]- and [15-2H2]-9-hexadecynoates. Lindlar reduction gave methyl [16-2H3]- and [15-2H2]cis-9-hexadecenoates. Overall yields ranged from 30% to 38%.  相似文献   

6.
, originally introduced as an inadvertent contaminant in solutions used for evaluating the stability of prostaglandins, proved to lead to the rapid disappearance of the cyclopentenone unit of PGA2 (as monitored by circular dichroic spectroscopy). The cyclopentenone unit is converted, in various metabolites, to a 9-keto, 9α or 9β-hydroxy group lacking the ring unsaturation. The major EtoAc-soluble 9-hydroxy metabolite (Compound-I) was shown to be 9α, 15α-dihydroxy-2,3,4,5-tetranor-13- -prostenoic acid. Similar tetranor 9-hydroxy metabolites with one additional degree of unsaturation, and with a 9β-hydroxy group, also occur but these have not been fully characterized. Only two of the wide range of 9-keto metabolites are fully characterized by mass spectral (MS) data: 9,15-oxo-2,3,4,5-tetranorprostanoic acid and 9,15-oxo-2,3,4,5-tetranor-13- -prostenoic acid. The water soluble metabolites have not been characterized further.The fully characterized metabolites together with MS data from mixtures of minor metabolites indicate that can perform the following transformations: β-oxidation, dehydrogenation at C-15, reduction of the enone carbon-carbon double bonds (both Δ10,11 and Δ13,14), reduction of the 9-ketone, and possibly migration of the cyclopentyl double bond (Δ10,11 → Δ11,12). metabolizes 15-epimeric PGA2 equally readily with the production of similar products. PGA1 affords less 9-keto metabolites with compound I constituting 33% of the product by HPLC analysis. displays some enantioselectivity, PGA2 and 15-epi-PGA2 are each metabolized more rapidly than their enantiomers. Other prostaglandins appear to be less readily metabolized.  相似文献   

7.
The in vivo utilization ofd-3-hydroxy[3-14C]butyrate for oxidation in the whole animal and for lipid and amino acid synthesis in brain and spinal cord of overnight-fasted 15-day-old chicks has been measured. Appreciable amounts of injected 3-hydroxy[3-14C]butyrate were expired as14CO2 one hour after injection, the total amount of which increased with increasing dosages. Lipid synthesis was high in both brain and spinal cord. Free, cholesterol and phospholipids were the main lipids labeled in both, tissues, increasing with time after injection up to 120 min. The incorporation of radioactivity into triglycerides, esterified cholesterol and free fatty acids was not time-dependent. Increased concentrations of 3-hydroxybutyrate gave rise to higher synthetic rates both in brain and spinal cord The rate of amino acid synthesis was slightly higher in brain than in spinal cord. Glutamate was always the major amino acid formed.  相似文献   

8.
The oxidation of an anticancer drug 5-fluorouracil (5-FU) by diperiodatoargentate(III) (DPA) was carried out both in the absence and presence of osmium(VIII) catalyst in alkaline medium at 27 °C and a constant ionic strength of 0.20 mol dm−3 spectrophotometrically attached with HI-TECH SFA-12 stopped flow accessory. The oxidation products in both the cases were identified as fluoroketene and Ag(I). The stoichiometry is same in both cases, i.e., [5-FU]:[DPA] = 1:1. The reaction was of first order in both catalysed and uncatalysed cases, with respect to [DPA] and was less than unit order in [5-FU] and negative fraction in [alkali]. The order in Os(VIII) was unity. In both cases [Ag(H3IO6)2] itself is the active species of DPA. The uncatalysed reaction in alkaline medium has been shown to proceed via a DPA-5-fluorouracil complex, which decomposes in a rate determining step to give the products. In catalysed reaction, it has been shown to proceed via a Os(VIII)-5-fluorouracil complex, which further reacts with one molecule of DPA in a rate determining step to give the products. The reaction constants involved in the different steps of the mechanisms were calculated for both the reactions. The catalytic constant (kCat.const.) was also calculated for catalysed reaction at different temperatures. The activation parameters with respect to slow step of the mechanisms were computed and discussed for both the cases. The thermodynamic quantities were also determined for both reactions.  相似文献   

9.
The interactions of phospholipids with four different cholesterol derivatives substituted with one OH or one keto group at position C20 or C22 of the side-chain were studied. The derivatives were the 22,R-hydroxy; 22,S-hydroxy; 22-keto- and 20,S-hydroxycholesterol. Two aspects of the interactions were investigated: (1) the effect of the cholesterol derivatives on the gel → liquid crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) and of dielaidoylphosphatidylethanolamine (DEPE) monitored by differential scanning calorimetry and (2) The effect on the lamellar → hexagonal HII phase transition of DEPE monitored by DSC and by 31P-NMR to determine structural changes. The gel → liquid crystalline phase transition was affected by the cholesterol derivatives to a much larger extent in the case of DPPC than of DEPE. In both cases, there was a differential effect of the four derivatives, the 22,R-hydroxycholesterol being the less effective. In DPPC-sterol 1:1 systems, 22,R-hydroxycholesterol does not suppress the melting transition, the ΔH values becomes 7.1 kcal · mol?1 as compared to 8.2 kcal · mol?1 for the pure lipid. 22,S-OH cholesterol has a much stronger effect (ΔH = 3.1 kcal · mol?1) and 22-ketocholesterol suppresses the transition completely. In DEPE mixtures of all these compounds, the melting transition of the phospholipid is still observable. The transition temperature was shifted to lower values (?13.5°C in the presence of 20,S-OH cholesterol). The ΔH of the transition was lowered by these compounds except in DEPE-22,R-OH cholesterol mixtures and the cooperativity of the transition (reflected by the width at half peak height) was reduced. The lamellar → hexagonal HII phase transition was also affected by the presence of these cholesterol derivatives. The transition temperature value was depressed with all these compounds. 20,S-OH cholesterol was the most effective followed by 22,R-OH cholesterol. The ΔH of the transition was not strongly affected. The molecular interfacial properties of these derivatives were studied by the monomolecular film technique. It is most likely that 22,R-OH cholesterol due to the hydroxyl groups at the 3β- and 22,R-positions orients with the sterol nucleus lying flat at the air/water interface, since the compression isotherm of either the pure sterol or the DOPC-sterol mixture (molar ration, 1:1) monomolecular film exhibits a transition at approx. 103 Å2, corresponding to the area of revolution of the sterol nucleus. This remarkable property, due probably to the existence of a kink between the side-chain and the long axis of the steroid nucleus, might explain the smaller effect of this sterol on the melting transition of either PC or PE systems.  相似文献   

10.
1. Cholesteryl 3β-sulphate is oxidized in vitro by preparations of bovine adrenal-cortex mitochondria to pregnenolone sulphate and isocaproic acid (4-methyl-pentanoic acid) without hydrolysis of the ester linkage. 2. Free cholesterol is the preferred substrate for adrenal-cortex cholesterol oxidase; the apparent Km for cholesteryl sulphate is 500μm and for free cholesterol 50μm under the same conditions. 3. Cholesteryl 3β-acetate is hydrolysed by bovine adrenal-cortex mitochondria in vitro to free cholesterol, which is subsequently oxidized to more polar steroids and isocaproic acid. Evidence was obtained that other cholesterol esters behave similarly. Cholesterol esters may thus act as precursors of steroid hormones. 4. Cholest-4-en-3-one is only poorly oxidized to isocaproic acid and more polar steroids and thus is probably not a significant precursor of steroid hormones. 5. Cholesteryl esters inhibit the oxidation of cholesterol competitively (Ki for cholesteryl phosphate 28μm, for cholesteryl sulphate 110μm, for cholesteryl acetate 65μm) but pregnenolone esters do not inhibit this system. 6. Pregnenolone and 20α-hydroxycholesterol (both metabolites of cholesterol in this system) inhibit the oxidation of cholesterol non-competitively. Ki for pregnenolone is 130μm and Ki for 20α-hydroxycholesterol is 17μm. 7. 25-Oxo-27-norcholesterol inhibits cholesterol oxidation non-competitively (Ki16μm). A number of other Δ5-3β-hydroxy steroids inhibit cholesterol oxidation and evidence was obtained that the 3β-hydroxyl group was necessary for inhibitory activity. 8. Pregnenolone, 20α-hydroxycholesterol and 25-oxo-27-norcholesterol inhibit oxidation of cholesteryl sulphate by this system but their sulphates do not. 9. 3β-Hydroxychol-5-enoic acid, 3α-hydroxy-5β-cholanic acid and 3β-hydroxy-22,23-bisnorchol-5-enoic acid stimulated formation of isocaproic acid from cholesterol. 10. No evidence was obtained that phosphorylation or sulphation are obligatory steps in cholesterol oxidation by adrenal-cortex mitochondria. 11. The cholesteryl 3β-sulphate sulphatase of bovine adrenal cortex was found mostly in the microsomal fraction and was inhibited by inorganic phosphate.  相似文献   

11.
Gestational diabetes mellitus (GDM) is associated with excessive oxidative stress which may affect placental vascular function. Cholesterol homeostasis is crucial for maintaining fetoplacental endothelial function. We aimed to investigate whether and how GDM affects cholesterol metabolism in human fetoplacental endothelial cells (HPEC). HPEC were isolated from fetal term placental arterial vessels of GDM or control subjects. Cellular reactive oxygen species (ROS) were detected by H2DCFDA fluorescent dye. Oxysterols were quantified by gas chromatography–mass spectrometry analysis. Genes and proteins involved in cholesterol homeostasis were detected by real-time PCR and immunoblotting, respectively. Cholesterol efflux was determined from [3H]-cholesterol labeled HPEC and [14C]-acetate was used as cholesterol precursor to measure cholesterol biosynthesis and esterification. We detected enhanced formation of ROS and of specific, ROS-derived oxysterols in HPEC isolated from GDM versus control pregnancies. ROS-generated oxysterols were simultaneously elevated in cord blood of GDM neonates. Liver-X receptor activation in control HPEC by synthetic agonist TO901319, 7-ketocholesterol, or 7β-hydroxycholesterol upregulated ATP-binding cassette transporters (ABC)A1 and ABCG1 expression, accompanied by increased cellular cholesterol efflux. Upregulation of ABCA1 and ABCG1 and increased cholesterol release to apoA-I and HDL3 (78?±?17%, 40?±?9%, respectively) were also observed in GDM versus control HPEC. The LXR antagonist GGPP reversed ABCA1 and ABCG1 upregulation and reduced the increased cholesterol efflux in GDM HPEC. Similar total cellular cholesterol levels were detected in control and GDM HPEC, while GDM enhanced cholesterol biosynthesis along with upregulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and sterol O-acyltransferase 1 (SOAT1) mRNA and protein levels. Our results suggest that in GDM cellular cholesterol homeostasis in the fetoplacental endothelium is modulated via LXR activation and helps to maintain its proper functionality.  相似文献   

12.
Human HDL (1.070-1.210), doubly labelled with 3H/14C-labelled unesterified cholesterol and 3H-labelled esterified cholesterol were incubated for 1–5 h with monolayer cultures of human endothelial cells. HDL were preincubated for 60–120 min the presence of albumin and with/without purified phospholipase A2 (control HDL, phospholipase A2 HDL) before dilution in the cell culture medium. Average phosphatidyl-choline (PC) degradation was 62.10% ± 2.57% (range 45–80%). A purified lipase /phospholipase A1 from guinea pig pancreas was used in some experiments (range of PC hydrolysis: 16–70%). (1) 3H/14C-labelled unesterified cholesterol and 3H-labelled esterified cholesterol appeared in cells during 0–5 h incubations. Trypsin treatment allowed a simple adsorption of HDL onto the cell surface to be avoided, and most of the 3H-labelled esterified cholesterol transferred to cells was hydrolysed. Cell uptake of radioactive cholesterol increased as a function of HDL concentration but no saturation was achieved at the highest lipoprotein concentration used (200 μg cholesterol/ml). Flux of 3H/14C-labelled unesterified cholesterol was related to the cell cholesterol content, suggesting that it might partly represent an exchange process. The cell cholesterol content was slightly increased after 5 h incubation with HDL (+16%). (2) Pretreatment of HDL with purified phospholipase A2 doubled on average the amount of cell recovered 3H-labelled esterified cholesterol, while the flux of 3H/14C-labelled unesterified cholesterol was enhanced by 15–25%. Both transfer and cell hydrolysis of 3H-labelled esterified cholesterol were increased. A stimulation was also observed using purified lipase/phospholipase A1, provided that a threshold phospholipid degradation was achieved (between 27 and 45%). (3) Endothelial cells were conditioned in different media so as to modulate their charge in cholesterol. The uptake of 3H-labelled esterified cholesterol was found to be significantly higher in cholesterol-enriched cells compared to the sterol-depleted state. Finally, movements of 3H-labelled esterified cholesterol from HDL to endothelial cells were essentially unaffected by cell density or by the presence of partially purified cholesterol ester transfer protein. The possible roles of the transfer of HDL esterified cholesterol to endothelial cells and its modulation by phospholipases are discussed.  相似文献   

13.
Two aldehydic C20-gibberellins, L-2 and L-4, were isolated from the immature fruits of yellow lupine (Lupinus luteus L.). L-2 was shown to have the structure II and named gibberellin A23. L-4 was identified as gibberellin A19(VI). Two new C20-gibberellins, tentatively called 3,13-dihydroxy GA15(IV) and 13-hydroxy GA15(VIII), were derived from gibberellins, A23 and A19, respectively. The biological activities of four 3,13-dihydroxy C20-gibberellins-GA18(I), GA23(II), GA28(III) and 3,13-dihydroxy GA15(IV), which were isolated from the fruits except for 3,13-dihydroxy GA15—were compared in six gibberellin bioassays.  相似文献   

14.
Viet nam is known as an endemic area of melioidosis but its etiologic agent originated in Viet nam was not extensively studied. For the first time, we analyzed the cellular lipid and fatty acid compositions of 15 Vietnamese isolates of Burkholderia pseudomallei, 10 from humans and 5 from the environment. Cellular lipid compositions were analyzed by two-dimensional thin-layer chromatography on silica gel G plates. Cellular fatty acid methyl esters were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The major lipids in all the isolates were phosphatidylglycerol (PG), two forms of phosphatidylethanolamine (PE-1 and PE-2), and two forms of ornithine-containing lipid (OL-1 and OL-2). PE-1 contained non-hydroxy fatty acids at both sn-1 and ?2 positions, while PE-2 possessed 2-hydroxy fatty acids and non-hydroxy fatty acids in a ratio of 1: 1. Since snake venom phospholipase A2 digestion of PE-2 liberated 2-hydroxy fatty acids, it was confirmed that these acids are at the sn-2 position of glycerol moiety. In both OL-1 and OL-2, amide-linked fatty acid was 3-hydroxy palmitic acid (3-OH-C16: 0), while ester-linked fatty acids were non-hydroxy acids in OL-1 and 2-hydroxy acids in OL-2. The total cellular fatty acid compositions of the test strains were characterized by the presence of 2-hydroxy palmitic (2-OH-C16: 0), 2-hydroxy hexadecenoic (2-OH-C16: 1), 2-hydroxy octadecenoic (2-OH-C18: 1), 2-hydroxy methylene octadecanoic (2-OH-C19CPA), 3-hydroxy myristic (3-OH-C14: 0) and 3-hydroxy palmitic (3-OH-C16: 0) acids. There were significant differences in the concentration of hexadecenoic (C16: 1), methylene hexadecanoic (C17CPA), octadecenoic (C18: 1) and methylene octadecanoic (C19CPA) acids among the Vietnamese isolates of B. pseudomallei. However, no significant difference was observed in cellular lipid and fatty acid components between strains of human and environmental origins.  相似文献   

15.
A method is described which measures the four main prostaglandins of human semen (PGE1, E2, 19-hydroxy PGE1, and 19-hydroxy PGE2). For routine measurements E1 and E2 are measured together as are 19-OH E1 and 19-OH E2. These are measured by forming oximes in aqueous solution. extraction, methylation and trimethyl silylation followed by gas chromatography. The method has sufficient sensitivity to measure the levels found in the majority of semen samples. The normal range in men with proven fertility was 90 to 260 μg/ml of 19-hydroxy Es and 30–200 μg/ml of Es.  相似文献   

16.
Hydroxylation activity of the mold fungi belonging to the orders Dothideales, Hypocreales, and Mucorales towards Δ5-3β-hydroxysteroids was studied. The fungi Bipolaris sorokiniana, Fusarium sp., and Rhizopus nigricans were able to introduce hydroxy group at position 7α; however, this ability was detected only at a low substrate load and with a low yield. A 7α-hydroxylase activity of the Curvularia lunata VKPM F-981 culture was shown for the first time. It was demonstrated that the studied strain was capable of stereo- and regioselective transformations of androstane 5-olefins at a load not less than 2 g/1. Conversion of pregnane steroids by this culture yielded both 7α- and 11β-hydroxy derivatives. The introduction of 7α-hydroxy group by this strain occurred concurrently with enzymatic hydrolysis of ester groups, which proceeded under mild conditions to give the corresponding alcohols in the cases of both 3-acetate of Δ5-androstenes and mono- and triacetates of Δ5-pregnenes.  相似文献   

17.
A method is described which measures the four main prostaglandins of human semen (PGE1, E2, 19-hydroxy PGE1, and 19-hydroxy PGE2). For routine measurements E1 and E2 are measured together as are 19-OH E1 and 19-OH E2. These are measured by forming oximes in aqueous solution. extraction, methylation and trimethyl silylation followed by gas chromatography. The method has sufficient sensitivity to measure the levels found in the majority of semen samples. The normal range in men with proven fertility was 90 to 260 μg/ml of 19-hydroxy Es and 30–200 μg/ml of Es.  相似文献   

18.
Evidence is presented for the existence of a group of 8-iso prostaglandins in human semen, comprising 8-iso PG E1*, 8-iso PG E2, 8-iso PG F, 8-iso PG F and the four corresponding 19-hydroxy prostaglandins. The E and F compounds have been positively identified by comparison of their mass spectra and chromatographic properties with those of authentic standards. Preliminary measurements of levels of these compounds in pooled semen are presented.  相似文献   

19.
Microwave irradiation of 2-hydroxy chalcones under solvent-free conditions resulted in a “green-chemistry” procedure for the preparation of flavanones in good yields, using an unmodified household microwave oven and silica as solid support. By irradiation of 2-hydroxy chalcones with trifluoroacetic acid over silica gel, 11 known flavanones were prepared in high yields. The synthesised compounds were characterised using spectroscopic techniques, namely, 1H NMR, 13C NMR and IR, and screened for their antifungal activity in vitro against Sclerotium rolfsii and Rhizoctonia solani by poisoned food technique. The compounds tested were found to be more active against R. solani, whereas against S. rolfsii, moderate activity was observed, as evident from LC50 values. The most potent compound 2-(4-fluorophenyl)-2,3-dihydrochromen-4-one (4a) had LC50 value of 12.0 mg L?1 followed by 11, 11a, 3a, 9a, 8a, 10a and 10 having LC50 values 18.21, 18.3, 32.9, 50.7, 88.8, 118.8 and 119.7 mg L?1, respectively.  相似文献   

20.
Aureobasidium pullulans, originally introduced as an inadvertent contaminant in solutions used for evaluating the stability of prostaglandins, proved to lead to the rapid disappearance of the cyclopentenone unit of PGA2 (as monitored by circular dichroic spectroscopy). The cyclopentenone unit is converted, in various metabolites, to a 9-keto, 9α or 9β-hydroxy group lacking the ring unsaturation. The major EtoAc-soluble 9-hydroxy metabolite (Compound-I) was shown to be 9α, 15α-dihydroxy-2,3,4,5-tetranor-13-trans-prostenoic acid. Similar tetranor 9-hydroxy metabolites with one additional degree of unsaturation, and with a 9β-hydroxy group, also occur but these have not been fully characterized. Only two of the wide range of 9-keto metabolites are fully characterized by mass spectral (MS) data: 9,15-oxo-2,3,4,5-tetranorprostanoic acid and 9,15-oxo-2,3,4,5-tetranor-13-trans-prostenoic acid. The water soluble metabolites have not been characterized further.The fully characterized metabolites together with MS data from mixtures of minor metabolites indicate that A. pullulans can perform the following transformations: β-oxidation, dehydrogenation at C-15, reduction of the enone carbon-carbon double bonds (both Δ10,11 and Δ13,14), reduction of the 9-ketone, and possibly migration of the cyclopentyl double bond (Δ10,11 → Δ11,12). A. pullulans metabolizes 15-epimeric PGA2 equally readily with the production of similar products. PGA1 affords less 9-keto metabolites with compound I constituting 33% of the product by HPLC analysis. A. pullulans displays some enantioselectivity, PGA2 and 15-epi-PGA2 are each metabolized more rapidly than their enantiomers. Other prostaglandins appear to be less readily metabolized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号