首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prairie cordgrass has been reported as a multi-polyploidy species having three cytotypes: tetra- (2n?=?4x?=?40), hexa- (2n?=?6x?=?60), and octoploid (2n?=?8x?=?80). A mixed-ploidy population comprising tetraploids and hexaploids was recently found at a single location in Illinois. However, adaptation and morphological differences between tetra- and hexaploids occurring in natural conditions as well as the contact zones of these cytotypes have yet to be determined. In this study, the cytotypes of 147 individuals of prairie cordgrass collected across the contact zone (4x?+?6x) were determined by flow cytometry using somatic G1 nuclei, and the results were confirmed by chromosome counts. Nineteen morphological characteristics were compared between the cytotypes. Tetra- and hexaploid plants have 2C genome sizes of 1.57 and 2.36?pg with chromosome counts of 40 and 60, respectively. This increase in polyploidy resulted in a greater variability of morphological expression in Illinois prairie cordgrass. Substantial differences in the flowering time, stomatal size, and plant morphological characteristics were observed between tetra- and hexaploids. The results indicate that the increasing of ploidy level in prairie cordgrass resulted in increased plant size in ploidy mixtures. The recent event of ploidy mixtures in prairie cordgrass natural populations offers unique opportunities for studying the formation and establishment of neopolyploidy.  相似文献   

2.
The Actinidia chinensis complex, a group of commercially important fruits (kiwifruit), is a complex of functionally dioecious lianas of variable ploidy. To understand the cytogeography better and to facilitate breeding in this complex, we examined the ploidy and morphological variations in 16 natural populations of A. chinensis var. chinensis and A. chinensis var. deliciosa across an ecogeographical gradient. Four ploidy levels were found, var. chinensis consisting of diploids and tetraploids and var. deliciosa consisting of tetraploids, pentaploids and hexaploids. Hexaploids were centred in the western Yun‐Gui plateau, tetraploids coexisted with hexaploids or diploids in the middle Yun‐Gui plateau and the Wuling‐Xuefeng mountains, and diploids occurred in the eastern Wuling‐Xuefeng mountains and the Hunan foothills. These findings indicate a gradual, clinal transition from hexaploid to diploid across the elevational and longitudinal gradient. The clear geographical segregation of diploids and hexaploids may have arisen from their differential ecological adaptation in response to altitude and climate, whereas the coexistence of cytotypes (2x–4x, 4x–6x and 4x–5x–6x) might be a result of reproductive barriers, with a particular contribution from the postzygotic reproductive isolation between ploidy races. The geographical pattern and morphological variation of cytotypes suggest a hybrid zone between the varieties in the Wuling‐Xuefeng mountains. The differences in cytotypes which have arisen as a result of ecological adaptation, distribution and morphological characteristics will provide important baseline data for the selection of germplasm and the breeding of kiwifruit. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 72–83.  相似文献   

3.
Many plant species contain populations with more than one polyploid cytotype, but little is known of the mechanisms maintaining several cytotypes in a population. Andropogon gerardii cytotypes were compared to evaluate different models of autopolyploid cytotype coexistence. The enneaploid (90 chromosome, 9x) cytotype was found to be larger and taller than the hexaploid (60 chromosome, 6x) cytotype. Seed production is significantly more efficient in hexaploids, but seed production per area was not significantly different. The two cytotypes are not exomorphologically separable in the field because of great plasticity in response to environmental variation and wide variation within each cytotype. These data suggest cytotypic variation is maintained by natural selection.  相似文献   

4.
为了探究喀斯特石漠化地区植物叶片功能性状及影响因素,以及揭示其对石漠化环境的适应机理,该文以中国南方喀斯特高原峡谷地区的泡核桃(Juglans sigillata)为对象,揭示土壤养分对叶片结构和光合性状的影响效应。结果表明:(1)泡核桃叶功能性状随石漠化等级增加,叶面积减小,比叶面积增大,叶干物质含量和叶组织密度先降后升,蒸腾速率、胞间CO2浓度、气孔导度和光能利用率先下降后升高,其他性状变化趋势不显著。(2)冗余分析表明土壤养分能够解释37.4%的光合性状变异与53.4%的结构性状变异,其中全磷和溶解性有机碳对光合性状影响最大,而对结构性状影响最显著的是碱解氮和速效磷。(3)比叶面积分别与叶干物质含量极显著负相关,与净光合速率极显著正相关,叶厚度与叶组织密度极显著负相关,蒸腾速率与胞间CO2浓度、气孔导度极显著正相关,水分利用速率与蒸腾速率、胞间CO2浓度、气孔导度极显著负相关,光能利用率与净光合速率显著正相关。研究结果表明,泡核桃为适应喀斯特石漠化的特殊生境采取增强生长功能性状,同时提高资源获取能力的开拓型生长策略...  相似文献   

5.
Cytogeographical variability among 564 plants from 26 populations of Turnera sidoides subsp. pinnatifida in mountain ranges of central Argentina was analysed with meiotic chromosome counts and flow cytometry and is described at regional and local scales. Populations were primarily tetraploids (2n = 4x = 28), although diploid (2n = 2x = 14), hexaploid (2n = 2x = 42), and mixed populations of diploids and triploids (2n = 3x = 21) were also found. Diploids, triploids, and hexaploids were fewer in number and restricted to narrow areas, while tetraploids were the most common and geographically widespread cytotype. Diploids grew at higher altitudes and in colder and wet locations; tetraploids had the broadest ecological spectrum, while hexaploids occurred at the lowest altitudes and in drier conditions. The cytotypes were also spatially segregated at a microgeographical scale. Diploids grew in the piedmont, tetraploids were in the adjacent valley, and in the contact zone of both cytotypes, patches of diploids and triploids were found. At a regional scale, the distribution of the cytotypes may be governed by a combination of ecological and historical variables, while segregation in the contact zone may be independent of the selective environment because the cytotypes are unable to coexist as a result of reproductive exclusion. The role of triploids is also discussed.  相似文献   

6.
The assessment of genetic differentiation in functional traits is fundamental towards understanding the adaptive characteristics of forest species. While traditional phenotyping techniques are costly and time‐consuming, remote sensing data derived from cameras mounted on unmanned aerial vehicles (UAVs) provide potentially valid high‐throughput information for assessing morphophysiological differences among tree populations. In this work, we test for genetic variation in vegetation indices (VIs) and canopy temperature among populations of Pinus halepensis as proxies for canopy architecture, leaf area, photosynthetic pigments, photosynthetic efficiency and water use. The interpopulation associations between vegetation properties and above‐ground growth (stem volume) were also assessed. Three flights (July 2016, November 2016 and May 2017) were performed in a genetic trial consisting of 56 populations covering a large part of the species range. Multispectral (visible and near infrared wavelengths), RGB (red, green, blue) and thermal images were used to estimate canopy temperature and vegetation cover (VC) and derive several VIs. Differences among populations emerged consistently across flights for VC and VIs related to leaf area, indicating genetic divergence in crown architecture. Population differences in indices related to photosynthetic pigments emerged only in May 2017 and were probably related to a contrasting phenology of needle development. Conversely, the low population differentiation for the same indices in July 2016 and November 2016 suggested weak interpopulation variation in the photosynthetic machinery of mature needles of P. halepensis. Population differences in canopy temperature found in July 2016 were indicative of variation in stomatal regulation under drought stress. Stem volume correlated with indices related to leaf area (positively) and with canopy temperature (negatively), indicating a strong influence of canopy properties and stomatal conductance on above‐ground growth at the population level. Specifically, a combination of VIs and canopy temperature accounted for about 60% of population variability in stem volume of adult trees. This is the first study to propose UAV remote sensing as an effective tool for screening genetic variation in morphophysiological traits of adult forest trees.  相似文献   

7.
Pierre Meerts 《Oecologia》1992,92(3):442-449
Polygonum aviculare subsp. aviculare is an annual selfing weed common in abandoned arable fields where it occurs as a widespread hexaploid cytotype (6x=60) and a rarer tetraploid cytotype (4x=40). The basis of phenological differentiation between the two cytotypes observed in a natural population where they coexist was examined in a greenhouse experiment comprising six soil conditions consisting of factorial combinations of two levels of fertility and three pot sizes. The environmental and genetic component of variation in 11 life history and morphological traits was quantified. Even though all traits except life span were plastic the two cytotypes appear to have evolved contrasting life history strategies and it is inferred that this can account for the temporal niche differentiation observed in the abandoned field during the first year of dereliction. Tetraploids are short-lived plants allocating a high proportion of their biomass to reproduction and completing their life cycle before July when the plant cover is sparse. Hexaploids are larger, later flowering, longer lived, plants with a lower reproductive effort and a higher final seed yield; it is inferred that these traits enable the hexaploids to compete successfully with the dense herbaceous layer of summer annuals that develops in the course of the first year of secondary succession. Differentiation in phenotypic plasticity between the two cytotypes was interpreted as indicative of higher opportunism and lower tolerance of poor soils and restricted rooting space in the hexaploid compared to the tetraploid cytotype.  相似文献   

8.
It has been proposed that plant species cytotypes commonly exhibit altered morphology, reproduction, geographic and ecological distributions. We studied phenotypic variation in height, sexual (flowers, seeds) and asexual (aerial bulbils) reproduction in natural populations and in the conditions of a common garden of three cytotypes (2n = 4x, 5x, 6x) of the bulbous geophyte Allium oleraceum in the Czech Republic. Additionally, we compared the germination and dormancy of seeds and bulbils to determine whether propagules have different ecological roles. The pattern of morphological differentiation observed between cytotypes under natural conditions was similar to that observed under common garden conditions, suggesting that variability in morphological characteristics appears to be associated with ploidy levels. We revealed differences in size and sexual and asexual production between A. oleraceum cytotypes, but with wide overlap among cytotypes, suggesting a limited possibility of the studied traits to reliably distinguish between cytotypes. Tetraploids and pentaploids were rather similar; they were taller and produced more flowers than hexaploids, which were mostly flowerless (mean <0.7 flower/plant). All cytotypes were able to produce viable seeds, but their numbers were extremely low, usually less than 3 seeds per inflorescence; clonal reproduction via aerial bulbils dominates in all cytotypes (flower:bulbil ratio <0.5), with tetraploids producing more but lighter bulbils than other cytotypes. The seed: ovule ratio was low (<0.1) in all cytotypes, although hexaploids reached higher values than other cytotypes. Bulbils germinated better (means >80%) than seeds in all cytotypes, with pentaploid bulbils showing the highest germination (mean 90.5%). The cytotypes did not differ in seed germination (range of means 73.4%–76.3%). About 6% of seeds did not germinate but were still viable at the end of the experiment, while all non-germinated bulbils of all cytotypes had rotten away. Seeds, but not bulbils, can likely form a short-term persistent propagule soil bank. We found no evidence of a phenotypic trade-off between the production of flowers (seeds) and the production of bulbils within the inflorescence of all studied cytotypes. Together, inter-cytotypic differences in fitness-related traits cannot completely explain the different geographic and ecological distributions of cytotypes in the Czech Republic found by previous research.  相似文献   

9.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 1.1.39) (RuBPCase) was quantified using polyacrylamide-gel electrophoresis in whole 9-d-old first leaves of 14 genotypes of Triticum, and cellular RuBPCase levels calculated. Diploids, tetraploids and hexaploids were analysed and it was confirmed that the RuBPCase level per cell is closely related to ploidy in wheat. Inter-genotypic variation in RuBPCase levels per cell and per leaf were surveyed. It was found that the interactions between leaf size, cell size and RuBPCase levels result in small variations in RuBPCase levels per unit leaf area between genotypes.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

10.
《Aquatic Botany》2007,86(3):269-279
Phragmites australis (Cav.) Trin. ex Steud. is virtually cosmopolitan and shows substantial variation in euploidy level and morphology. The aim of this study was to assess clone-specific differences in morphological, anatomical, physiological and biochemical traits of P. australis as affected by the geographic origin, the euploidy level (4x, 6x, 8x and 12x), and to assess differences between native and introduced clones in North America. Growth, morphology, photosynthetic characteristics, photosynthetic pigments and enzymes were measured on 11 geographically distinct clones propagated in a common environment in Denmark. Any differences between the measured parameters were caused by genetic differences between clones.Overall, the largest differences between clones were found in ontogeny, shoot morphology and leaf anatomy. The North Swedish clone was adapted to short growing seasons and sprouted very early in the spring but senesced early in July. In contrast, clones from southern regions were adapted to warmer and longer growing seasons and failed to complete the whole growth-cycle in Denmark. Some clones from oceanic habitats with climatic conditions that do not differ much from conditions at the Danish growth site did flower in the common environment.The octoploid genotype in general had larger dimensions of leaves, taller and thicker shoots and larger cell sizes than did the hexaploid and tetraploid clones. The dodecaploid clone was neither bigger than the octoploid, nor significantly different from tetraploid and hexaploid clones in most of the morphological characters observed. Stomatal density decreased with increasing ploidy level, while length of guard cells increased. Tetraploid clones generally had morphometric dimensions, similar to hexaploids. Hence, polyploidy did not always result in an increase in plant size, probably because the number of cell divisions during development is reduced.Four North American clones were included in the study. The clone from the Atlantic Coast and the supposed invasive European clone resembled each other. The Gulf Coast clone differed from the rest of the clones in having leaf characters resembling Phragmites mauritianus Kunth. Thus, morphological characters are not unmistakable parameters that can be used to discriminate between introduced and native clones.The physiological and biochemical processes also differed between clones, but these processes showed considerable phenotypic plasticity and were therefore very difficult to evaluate conclusively.It is concluded that P. australis is a species with very high genetic variability which is augmented by its cosmopolitan distribution, clonal growth form and the large variation in chromosome numbers. It is therefore not surprising that large genetically determined differences in ontogeny, shoot morphology and leaf anatomy occur between clones.  相似文献   

11.
Patterns of morphological variation were studied in herbarium specimens of Stellaria longipes, an herbaceous perennial and subsequently in a growth chamber experiment using three cytotypes (4x, 6x, 8x) of S. longipes and diploids of its proposed progenitor S. longifolia. Despite extensive phenotypic plasticity in many traits, patterns of variation resulting from ecotypic differentiation within S. longipes could be detected in the field. A distinct form of S. longipes, which is restricted primarily to arctic and alpine tundra locations, shows genetic differentiation for the following traits: few flowers per ramet, a low proportion of flowering ramets, and ovate leaves. The three cytotypes of S. longipes could be distinguished by their mean genotypic value for leaf length and number of flowers per ramet. The extent of phenotypic plasticity in these traits makes it unlikely that the cytotypes could be distinguished in the field. The direction and extent of morphological divergence between S. longifolia and S. longipes suggest an alloploid origin for S. longipes. Variational trends (among-habitat types and cytotypes) in trait means are similar to those reported previously for the pattern of plasticity. This supports the argument that similar forces guide evolution of the mean and pattern of plasticity of a trait.  相似文献   

12.
Polyploidy can cause variation in plant functional traits and thereby generate individuals that can adapt to fluctuating environments and exploit new environments. However, few empirical studies have tested for an association between ploidy level and climatic tolerance of invasive cytotypes relative to conspecific native‐range cytotypes. Here, we used an invasive plant Solidago canadensis to test whether invasive populations had a higher proportion of polyploids, greater height and stem‐base diameter, and occupied a wider range of climatic conditions than conspecific native‐range populations. We also tested whether the invasive populations had overcome genetic founder effects. We sampled a total of 80 populations in parts of the invaded range in China and native range in North America for in situ measurements of plant height and stem‐base diameter in the field and for population genetic and cytotype analyses. To examine climatic correlates, we augmented our field‐sampled data with occurrence records obtained from Global Biodiversity Information Facility. All, except one, of the populations that we sampled in China occurred in a humid subtropical climate. In contrast, the North American populations occurred in humid continental, humid subtropical, and semi‐arid climatic zones. All populations of S. canadensis in China were purely hexaploid, while the North American populations were diploid, tetraploid, and hexaploid. The invasive hexaploids were significantly taller and had a larger stem‐base diameter than native hexaploids. Native hexaploids were significantly taller and had larger stem‐base diameter than native diploids. Climatic correlate assessment found that invasive and native populations occupied different climatic envelopes, with invasive populations occurring in warmer and less seasonal climates than native populations. However, there was no significant correlation between ploidy level and climatic envelope of S. canadensis. Molecular phylogeography data suggest reduced genetic founder effects in the invaded range. Overall, these results suggest that polyploidy does not influence S. canadensis climatic tolerance.  相似文献   

13.
Eurya japonica occurs in diverse light environments through seed dispersal by birds. As the seed size is extremely small, we hypothesized that newly germinated seedlings with restricted depth of roots and length of the hypocotyl would suffer high mortality due to increased transpiration in sunny habitats and low light in shady habitats. We also expected that surviving seedlings would differ in leaf traits between habitats as a result of selection. We aimed to determine how photosynthetic traits differ between habitats and how leaf structure is related to this difference. We examined photosynthesis and leaf morpho‐anatomy for plants cloned from cuttings collected from the forest understory (shade population) and neighboring roadsides and cut‐over areas (sun population) and then grown under two irradiances (18.5% and 100% sunlight) in an experimental garden. Under growth in 100% sunlight, cloned plants from the sun population exhibited significantly greater area‐based photosynthetic capacity compared to cloned plants from the shade population at a comparable stomatal conductance, which was attributable to a higher area‐based leaf nitrogen concentration. On the other hand, mean values of photosynthetic capacity did not significantly differ between the two populations. Cloned plants from the sun population had significantly thicker leaf laminas and spongy tissue and lower stomatal density compared to cloned plants from the shade population. Thickened leaf lamina might have increased leaf tolerance to physical stresses in open habitats. The variation in leaf morpho‐anatomy between the two populations can be explained in terms of the economy of leaf photosynthetic tissue.  相似文献   

14.
Areas of immediate contact of different cytotypes offer a unique opportunity to study evolutionary dynamics within heteroploid species and to assess isolation mechanisms governing coexistence of cytotypes of different ploidy. The degree of reproductive isolation of cytotypes, that is, the frequency of heteroploid crosses and subsequent formation of viable and (partly) fertile hybrids, plays a crucial role for the long‐term integrity of lineages in contact zones. Here, we assessed fine‐scale distribution, spatial clustering, and ecological niches as well as patterns of gene flow in parental and hybrid cytotypes in zones of immediate contact of di‐, tetra‐, and hexaploid Senecio carniolicus (Asteraceae) in the Eastern Alps. Cytotypes were spatially separated also at the investigated microscale; the strongest spatial separation was observed for the fully interfertile tetra‐ and hexaploids. The three main cytotypes showed highly significant niche differences, which were, however, weaker than across their entire distribution ranges in the Eastern Alps. Individuals with intermediate ploidy levels were found neither in the diploid/tetraploid nor in the diploid/hexaploid contact zones indicating strong reproductive barriers. In contrast, pentaploid individuals were frequent in the tetraploid/hexaploid contact zone, albeit limited to a narrow strip in the immediate contact zone of their parental cytotypes. AFLP fingerprinting data revealed introgressive gene flow mediated by pentaploid hybrids from tetra‐ to hexaploid individuals, but not vice versa. The ecological niche of pentaploids differed significantly from that of tetraploids but not from hexaploids.  相似文献   

15.
Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.  相似文献   

16.
17.
Although triploid Populus varieties have been used widely in timber and pulpwood production, the performance of economic traits in Populus with higher ploidy levels remains unknown due to a lack of germplasms with higher ploidy. In this study, we first successfully induced hexaploids in Populus by treating triploid leaf explants with colchicine in vitro. In total, 32 hexaploids were produced. The frequency of hexaploids was significantly affected by the interaction between colchicine concentration and exposure time. The highest hexaploid induction efficiency was 16.89% (±?2.26), which was achieved by treating explants with 0.04% colchicine for 7 days. Compared to triploids, hexaploids had thinner epidermal hair, larger stomata and protoplasts, and fewer chloroplasts, indicating that significant phenotypic changes accompanied an increase in ploidy level. These hexaploids are valuable for investigating the performance of economic traits in Populus with higher ploidy levels and have the potential to be used as parents to produce new tetraploid and pentaploid germplasms in Populus breeding programs.  相似文献   

18.
We compared variation in sun-canopy leaf anatomy, morphology and photosynthetic rates of coexisting woody species (trees and lianas) in an 8-year-old secondary forest (SF) and mature forest (MF) in the wet season in Xishuangbanna, SW China. Variability of leaf traits of 66 species within growth-form groups in each forest was quantified using coefficients of variation (CV). For the mean values, the woody species in the SF had significantly higher leaf thickness and stomatal density, but lower nonmesophyll/mesophyll ratios than those in the MF. The average leaf area and leaf mass area (LMA) in the studied woody species did not change greatly during the successional process, but differed significantly between the growth forms, with trees having higher values than lianas. The light-saturated photosynthetic rate per unit leaf area (A a) of the woody species in the SF ranged from 11.2 to 34.5 μmol m−2 s−1, similarly to pioneer tree species from literature data in southeast Asia. The A a and photosynthetic nitrogen-use efficiency (PNUE) were significantly higher than those in the MF; whereas A a in the MF ranged between 9 to 21 μmol m−2 s−1, with similar values between lianas and trees. For all woody species in both SF and MF, there were no significant differences in the average values of the CV of all measured variables for both lianas and trees. However, considerable variation in leaf anatomy, morphology, and photosynthetic rates within both growth forms and forests existed, as well as substantial variation in leaf size and stomatal density. We concluded that the tropical woody species formed a heterogeneous functional group in terms of leaf morphology and physiology in both secondary and mature forests.  相似文献   

19.
The use of local, native plant materials is now common in restoration but testing for polyploidy in seed sources is not. Diversity in cytotypes across a landscape can pose special seed transfer challenges, because the methods used to determine genetically appropriate materials for seed transfer do not account for cytotypic variation. This lack of consideration may result in mixing cytotypes through revegetation, which could reduce long‐term population viability. We surveyed nine populations of a native bunchgrass, Pseudoroegneria spicata, in three EPA Level III Ecoregions in the western United States to determine the frequency of polyploidy, whether there are differences in traits (phenotype, fecundity, and mortality) among plants of different cytotypes, and whether cytotype frequency varies among ecoregions. We assessed trait variation over 2 years in a common garden and determined ploidy using flow cytometry. Polyploidy and mixed cytotype populations were common, and polyploids occurred in all ecoregions. Four of the nine populations were diploid. The other five had tetraploids present: three had only tetraploid individuals whereas two had mixed diploid/tetraploid cytotypes. There was significant variation in traits among cytotypes: plants from tetraploid populations were larger than diploid or mixed populations. The frequency and distribution of cytotypes make it likely that seed transfer in the study area will inadvertently mix diploid and polyploid cytotypes in this species. The increasing availability of flow cytometry may allow ploidy to be incorporated into native plant materials sourcing and seed transfer.  相似文献   

20.
Aim  This study aimed to document precisely the patterns of DNA ploidy variation in the native and secondary ranges of Lythrum salicaria distribution. The hypothesis that species invasiveness had been induced by a switch in ploidy level was addressed.
Location  Europe, Middle East, North America.
Methods  DNA ploidy levels of 1884 progenies of 578+ plants collected at 124 localities were determined by DAPI flow cytometry.
Results  Large cytotype variation (2 x , 3 x , 4 x and 6 x ) was found across the native area of distribution (64 populations covering 12 European and two Middle Eastern countries). DNA hexaploids were detected for the first time, and rare DNA triploids were reliably confirmed. DNA tetraploids largely prevailed across the native range studied, while DNA diploids and DNA hexaploids were recorded only in Israel and Turkey, respectively. DNA triploid progenies occurred in one population from Hungary (together with DNA tetraploids). Sympatric growth of DNA tetraploids and DNA hexaploids was repeatedly encountered in Turkey. In contrast, cytotype uniformity was a typical feature of the invasive North American plants. Sixty populations, covering 13 states of the USA and provinces of Canada, were characterized by the presence of only DNA tetraploids.
Main conclusions  Several L. salicaria cytotypes (2 x , 3 x , 4 x , 6 x ) occur in the native range of distribution, with much variation concentrated in the Middle Eastern countries, whereas only DNA tetraploids appeared to occur in North America. Our data show that the invasive spread of North American populations was not triggered by differences in ploidy level. Alternative explanations should be sought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号