首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many techniques in molecular biology require the use of pure nucleic acids in general and circular DNA (plasmid or mitochondrial) in particular. We have developed a method to separate these circular molecules from a mixture containing different species of nucleic acids using rolling circle amplification (RCA). RCA of plasmid or genomic DNA using random hexamers and bacteriophage Phi29 DNA polymerase has become increasingly popular for the amplification of template DNA in DNA sequencing protocols. Recently, we reported that the mutant single-stranded DNA binding protein (SSB) from Thermus thermophilus (TthSSB) HB8 eliminates nonspecific DNA products in RCA reactions. We developed this method for separating circular nucleic acids from a mixture having different species of nucleic acids. Use of the mutant TthSSB resulted in an enhancement of plasmid or mitochondrial DNA content in the amplified product by approximately 500×. The use of mutant TthSSB not only promoted the amplification of circular target DNA over the background but also could be used to enhance the amplification of circular targets over linear targets.  相似文献   

2.
Protein p5 is a Bacillus subtilis phage phi 29-encoded protein required for phi 29 DNA replication in vivo. Protein p5 has single-stranded DNA binding (SSB) capacity and stimulates in vitro DNA replication severalfold when phi 29 DNA polymerase is used to replicate either the natural phi 29 DNA template or primed M13 single-stranded DNA (ssDNA). Furthermore, other SSB proteins, including Escherichia coli SSB, T4 gp32, adenovirus DNA-binding protein, and human replication factor A, can functionally substitute for protein p5. The stimulatory effect of phi 29 protein p5 is not due to an increase of the DNA replication rate. When both phi 29 DNA template and M13 competitor ssDNA are added simultaneously to the replication reaction, phi 29 DNA replication is strongly inhibited. This inhibition is fully overcome by adding protein p5, suggesting that protein p5-coated M13 ssDNA is no longer able to compete for replication factors, probably phi 29 DNA polymerase, which has a strong affinity for ssDNA. Electron microscopy demonstrates that protein p5 binds to M13 ssDNA forming saturated complexes with a smoothly contoured appearance and producing a 2-fold reduction of the DNA length. Protein p5 also binds to ssDNA in the phi 29 replicative intermediates produced in vitro, which are similar in structure to those observed in vivo. Our results strongly suggest that phi 29 protein p5 is the phi 29 SSB protein active during phi 29 DNA replication.  相似文献   

3.
The GenomiPhi DNA Amplification Kit employs rolling circle amplification (RCA) using phi29 polymerase, dNTPs, and random hexamers. We demonstrated that repeated RCA (at least three times) is useful for high-fidelity amplification of large amounts of plasmid DNA.  相似文献   

4.
DNA replication of 29 and related phages takes place via a strand displacement mechanism, a process that generates large amounts of single-stranded DNA (ssDNA). Consequently, phage-encoded ssDNA-binding proteins (SSBs) are essential proteins during phage 29-like DNA replication. In the present work we analyze the helix-destabilizing activity of the SSBs of 29 and the related phages Nf and GA-1, their ability to eliminate non-productive binding of 29 DNA polymerase to ssDNA and their stimulatory effect on replication by 29 DNA polymerase in primed M13 ssDNA replication, a situation that resembles type II replicative intermediates that occur during 29-like DNA replication. Significant differences have been appreciated in the functional behavior of the three SSBs. First, the GA-1 SSB is able to display helix-destabilizing activity and to stimulate dNTP incorporation by 29 DNA polymerase in the M13 DNA replication assay, even at SSB concentrations at which the 29 and Nf SSBs do not show any effect. On the other hand, the 29 SSB is the only one of the three SSBs able to increase the replication rate of 29 DNA polymerase in primed M13 ssDNA replication. From the fact that the 29 SSB, but not the Nf SSB, stimulates the replication rate of Nf DNA polymerase we conclude that the different behaviors of the SSBs on stimulation of the replication rate of 29 and Nf DNA polymerases is most likely due to formation of different nucleoprotein complexes of the SSBs with the ssDNA rather than to a specific interaction between the SSB and the corresponding DNA polymerase. A model that correlates the thermodynamic parameters that define SSB–ssDNA nucleoprotein complex formation with the functional stimulatory effect of the SSB on 29-like DNA replication has been proposed.  相似文献   

5.
Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material.  相似文献   

6.
Due to their involvement in processes such as DNA replication, repair, and recombination, bacterial single-stranded DNA binding (SSB) proteins are essential for the survival of the bacterial cell. Whereas most bacterial SSB proteins form homotetramers in solution, dimeric SSB proteins were recently discovered in the Thermus/Deinococcus group. In this work we characterize the biophysical properties of the SSB protein from Thermus aquaticus (TaqSSB), which is structurally quite similar to the tetrameric SSB protein from Escherichia coli (EcoSSB). The binding of TaqSSB and EcoSSB to single-stranded nucleic acids was found to be very similar in affinity and kinetics. Mediated by its highly conserved C-terminal region, TaqSSB interacts with the χ-subunit of E. coli DNA polymerase III with an affinity that is similar to that of EcoSSB. Using analytical ultracentrifugation, we show that TaqSSB mutants are able to form tetramers in solution via arginine-mediated hydrogen-bond interactions that we identified in the crystal packing of wild-type TaqSSB. In EcoSSB, we identified a homologous arginine residue involved in the formation of higher aggregates and metastable highly cooperative single-stranded DNA binding under low salt conditions.  相似文献   

7.
The single-stranded DNA-binding protein (SSB) of phage GA-1 displays higher efficiency than the SSBs of the related phages phi 29 and Nf. In this work, the self-interaction ability of GA-1 SSB has been analyzed by visualization of the purified protein by electron microscopy, glycerol gradient sedimentation, and in vivo cross-linking of bacterial cultures infected with phage GA-1. GA-1 SSB contains an insert at its N-terminal region that is not present in the SSBs of phi 29 and Nf. Three deletion mutant proteins have been characterized, Delta N19, Delta N26, and Delta N33, which lack the 19, 26 or 33 amino acids, respectively, that follow the initial methionine of GA-1 SSB. Mutant protein Delta N19 retains the structural and functional behavior of GA-1 SSB, whereas mutant proteins Delta N26 and Delta N33 no longer stimulate viral DNA replication or display helix-destabilizing activity. Analysis of the mutant proteins by ultracentrifugation in glycerol gradients and electron microscopy indicates that deletion of 26 or 33 but not of 19 amino acids of the N-terminal region of GA-1 SSB results in the loss of the oligomerization ability of this protein. Our data support the importance of the N-terminal region of GA-1 SSB for the differential self-interaction ability and functional behavior of this protein.  相似文献   

8.
Single-stranded (ss) DNA binding (SSB) proteins play central roles in DNA replication, recombination and repair in all organisms. We previously showed that Escherichia coli (Eco) SSB, a homotetrameric bacterial SSB, undergoes not only rapid ssDNA-binding mode transitions but also one-dimensional diffusion (or migration) while remaining bound to ssDNA. Whereas the majority of bacterial SSB family members function as homotetramers, dimeric SSB proteins were recently discovered in a distinct bacterial lineage of extremophiles, the Thermus–Deinococcus group. Here we show, using single-molecule fluorescence resonance energy transfer (FRET), that homodimeric bacterial SSB from Thermus thermophilus (Tth) is able to diffuse spontaneously along ssDNA over a wide range of salt concentrations (20–500 mM NaCl), and that TthSSB diffusion can help transiently melt the DNA hairpin structures. Furthermore, we show that two TthSSB molecules undergo transitions among different DNA-binding modes while remaining bound to ssDNA. Our results extend our previous observations on homotetrameric SSBs to homodimeric SSBs, indicating that the dynamic features may be shared among different types of SSB proteins. These dynamic features of SSBs may facilitate SSB redistribution and removal on/from ssDNA, and help recruit other SSB-interacting proteins onto ssDNA for subsequent DNA processing in DNA replication, recombination and repair.  相似文献   

9.
We improved the target RNA-primed RCA technique for direct detection and analysis of RNA in vitro and in situ. Previously we showed that the 3′ → 5′ single-stranded RNA exonucleolytic activity of Phi29 DNA polymerase converts the target RNA into a primer and uses it for RCA initiation. However, in some cases, the single-stranded RNA exoribonucleolytic activity of the polymerase is hindered by strong double-stranded structures at the 3′-end of target RNAs. We demonstrate that in such hampered cases, the double-stranded RNA-specific Escherichia coli RNase III efficiently assists Phi29 DNA polymerase in converting the target RNA into a primer. These observations extend the target RNA-primed RCA possibilities to test RNA sequences distanced far from the 3′-end and customize this technique for the inner RNA sequence analysis.  相似文献   

10.
The HolC-HolD (χψ) complex is part of the DNA polymerase III holoenzyme (Pol III HE) clamp-loader. Several lines of evidence indicate that both leading- and lagging-strand synthesis are affected in the absence of this complex. The Escherichia coli ΔholD mutant grows poorly and suppressor mutations that restore growth appear spontaneously. Here we show that duplication of the ssb gene, encoding the single-stranded DNA binding protein (SSB), restores ΔholD mutant growth at all temperatures on both minimal and rich medium. RecFOR-dependent SOS induction, previously shown to occur in the ΔholD mutant, is unaffected by ssb gene duplication, suggesting that lagging-strand synthesis remains perturbed. The C-terminal SSB disordered tail, which interacts with several E. coli repair, recombination and replication proteins, must be intact in both copies of the gene in order to restore normal growth. This suggests that SSB-mediated ΔholD suppression involves interaction with one or more partner proteins. ssb gene duplication also suppresses ΔholC single mutant and ΔholC ΔholD double mutant growth defects, indicating that it bypasses the need for the entire χψ complex. We propose that doubling the amount of SSB stabilizes HolCD-less Pol III HE DNA binding through interactions between SSB and a replisome component, possibly DnaE. Given that SSB binds DNA in vitro via different binding modes depending on experimental conditions, including SSB protein concentration and SSB interactions with partner proteins, our results support the idea that controlling the balance between SSB binding modes is critical for DNA Pol III HE stability in vivo, with important implications for DNA replication and genome stability.  相似文献   

11.
A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain.  相似文献   

12.
Initiation of phage phi29 DNA replication starts with the recognition of the origin of replication, located at both ends of the linear DNA, by a heterodimer formed by the phi29 terminal protein (TP) and the phi29 DNA polymerase. The parental TP, covalently linked to the DNA ends, is one of the main components of the replication origin. Here we provide evidence that recognition of the origin is mediated through interactions between the TP of the TP/DNA polymerase heterodimer, called primer TP, and the parental TP. Based on amino acid sequence comparisons, various phi29 TP mutants were generated at conserved amino acid residues from positions 61 to 87. In vitro phi29 DNA amplification analysis revealed that residues Asn80 and Tyr82 are essential for functional interaction between primer and parental TP required for recognition of the origin of replication. Although these mutant TPs can form functional heterodimers with phi29 DNA polymerase that are able to recognize the origin of replication, these heterodimers are not able to recognize an origin containing a mutant TP.  相似文献   

13.
Gene A protein of bacteriophage phi X174 plays a role as a site-specific endonuclease in the initiation and termination of phi X rolling circle DNA replication. To clarify the sequence requirements of this protein we have studied the cleavage of single-stranded restriction fragments from phi X and G4 viral DNAs using purified gene A protein. The results show that in both viral DNAs cleavage occurs at the origin and at one additional site which shows striking sequence homology with the origin region. During rolling circle replication the single-stranded viral DNA tail is covered with single-stranded DNA binding (SSB) protein. Therefore, we have also studied the effect of SSB on phi X gene A protein cleavage. In these conditions only single-stranded fragments containing the complete or almost complete origin region of 30 bases are cleaved, whereas cleavage at the additional sites of phi X or G4 viral DNAs does not occur. A model for termination of rolling circle replication which is based on these findings is presented. Finally, we present evidence that the second product of gene A, the A* protein, cleaves phi X viral DNA at the additional cleavage site in the presence of SSB, not only in vitro but also in vivo. The functional significance of this cleavage in vivo is discussed.  相似文献   

14.
Using an evolution-mimicking algorithm (EMA), we have recently identified DNA aptamers that inhibit Taq DNA polymerase. In the present study, we have attempted to improve further the inhibitory activities of aptamers, as well as to characterize those aptamers with the most potent inhibitory activities. To characterize the most potent aptamer and demonstrate its applicability, the abilities to inhibit Tth DNA polymerase and to modulate specific amplification in PCR were investigated. This aptamer inhibited both Tth DNA polymerase and Taq DNA polymerase and improved the specificity of detection of a low-copy-number target gene in PCR using these DNA polymerases.  相似文献   

15.
Single-stranded DNA-binding proteins have in common their crucial roles in DNA metabolism, although they exhibit significant differences in their single-stranded DNA binding properties. To evaluate the correlation between the structure of different nucleoprotein complexes and their function, we have carried out a comparative study of the complexes that the single-stranded DNA-binding proteins of three related bacteriophages, ?29, Nf and GA-1, form with single-stranded DNA. Under the experimental conditions used, ?29 and Nf single-stranded DNA-binding proteins are stable monomers in solution, while GA-1 single-stranded DNA-binding protein presents a hexameric state, as determined in glycerol gradients. The thermodynamic parameters derived from quenching measurements of the intrinsic protein fluorescence upon single-stranded DNA binding revealed (i) that GA-1 single-stranded DNA-binding protein occludes a larger binding site (n=51 nt/oligomer) than ?29 and Nf SSBs (n=3.4 and 4.7 nt/monomer, respectively); and (ii) that it shows a higher global affinity for single-stranded DNA (GA-1 SSB, K(eff)=18.6 x 10(5) M(-1); o29 SSB, K(eff)=2.2 x 10(5) M(-1); Nf SSB, K(eff)=2.9 x 10(5) M(-1)). Altogether, these parameters justify the differences displayed by the GA-1 single-stranded DNA-binding protein and single-stranded DNA complex under the electron microscope, and the requirement of higher amounts of ?29 and Nf single-stranded DNA-binding proteins than of GA-1 SSB in gel mobility shift assays to produce a similar effect. The structural differences of the nucleoprotein complexes formed by the three single-stranded DNA-binding proteins with single-stranded DNA correlate with their different functional stimulatory effects in ?29 DNA amplification.  相似文献   

16.
Enhancing PCR amplification and sequencing using DNA-binding proteins   总被引:1,自引:0,他引:1  
The polymerase chain reaction (PCR) is a powerful core molecular biology technique, which when coupled to chain termination sequencing allows gene and DNA sequence information to be derived rapidly. A number of modifications to the basic PCR format have been developed in an attempt to increase amplification efficiency and the specificity of the reaction. We have applied the use of DNA-binding protein, gene 32 protein from bacteriophage T4 (T4gp32) to increase amplification efficiency with a number of diverse templates. In addition, we have found that using single-stranded DNA-binding protein (SSB) or recA protein in DNA sequencing reactions dramatically increases the resolution of sequencing runs. The use of DNA-binding proteins in amplification and sequencing may prove to be generally applicable in improving the yield and quality of a number of templates from various sources.  相似文献   

17.
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of γ-complex to support the reaction in the absence of τ. However, if γ-complex is present to load β2, a truncated τ protein containing only domains III–V will suffice. This truncated protein is sufficient to bind both the α subunit of DNA polymerase (Pol) III and χψ. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where τ is only required to serve as a scaffold to hold Pol III and χ in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476–23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-τ-ψ-χ-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (kcat/Km) for the strand displacement reaction is ∼300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (∼300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.  相似文献   

18.
During DNA replication in Escherichia coli, single-stranded DNA-binding protein (SSB) protects single-stranded DNA from nuclease action and hairpin formation. It is known that the highly conserved C-terminus of SSB contacts the χ subunit of DNA polymerase III. However, there only exists a theoretical model in which the 11 C-terminal amino acids of SSB have been docked onto the surface of χ. In order to refine this model of SSB/χ interaction, we exchanged amino acids in χ and SSB by site-directed mutagenesis that are predicted to be of key importance. Detailed characterization of the interaction of these mutants by analytical ultracentrifugation shows that the interaction area is correctly predicted by the model; however, the SSB C-terminus binds in a different orientation to the χ surface. We show that evolutionary conserved residues of χ form a hydrophobic pocket to accommodate the ultimate two amino acids of SSB, P176 and F177. This pocket is surrounded by conserved basic residues, important for the SSB/χ interaction. Mass spectrometric analysis of χ protein cross-linked to a C-terminal peptide of SSB reveals that K132 of χ and D172 of SSB are in close contact. The proposed SSB-binding site resembles those described for RecQ and exonuclease I.  相似文献   

19.
Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.  相似文献   

20.
Single-stranded DNA binding proteins (SSBs) play central roles in cellular and viral processes involving the generation of single-stranded DNA. These include DNA replication, homologous recombination and DNA repair pathways. SSBs bind DNA using four ‘OB-fold’ (oligonucleotide/oligosaccharide binding fold) domains that can be organised in a variety of overall quaternary structures. Thus eubacterial SSBs are homotetrameric whilst the eucaryal RPA protein is a heterotrimer and euryarchaeal proteins vary significantly in their subunit compositions. We demonstrate that the crenarchaeal SSB protein is an abundant protein with a unique structural organisation, existing as a monomer in solution and multimerising on DNA binding. The protein binds single-stranded DNA distributively with a binding site size of ~5 nt per monomer. Sulfolobus SSB lacks the zinc finger motif found in the eucaryal and euryarchaeal proteins, possessing instead a flexible C-terminal tail, sensitive to trypsin digestion, that is not required for DNA binding. In comparison with Escherichia coli SSB, the tail may play a role in protein–protein interactions during DNA replication and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号